Analysis of the draft IEEE 802.11 wireless local area network (WLAN) standard is needed to characterize the expected performance of the standard's ad hoc and infrastructure networks. The performance of the medium access control (MAC) sublayer, which consists of Distributed Coordination Function (DCF) and Point Coordination Function (PCF), is determined b y simulating asynchronous data traffic in a 1 Mbps ad hoc network, and asynchronous data and packetized voice traffic in a 1 Mbps infrastructure network. The simulation models incorporate the effect of burst errors, packet size, RTS threshold and fragmentation threshold on network throughput and delay. The results show that the IEEE 802.11 WLAN can achieve a reasonably high efficiency when the medium is almost error-free, but may degrade appreciably under harsh fading. The results also show that time-sensitive traffic such as packet voice can be suppol-ted together with other intensive traffic such as packet data. However, an echo canceler is required f o r packet voice systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.