Natural contamination of groundwater with arsenic (As) occurs around the world but is most widespread in the river basin deltas of South and Southeast Asia. Shallow groundwater is extensively used in the Bengal basin for irrigation of rice in the dry winter season, leading to the possibility of As accumulation in soils, toxicity to rice and increased levels of As in rice grain and straw. The impact of As contaminated irrigation water on soilAs content and rice productivity was studied over two winter-season rice crops in the command area of a single tubewell in Faridpur district, Bangladesh. After 16-17 years of use of the tubewell, a spatially variable build up of As and other chemical constituents of the water (Fe, Mn and P) was observed over the command area, with soil-As levels ranging from about 10 to 70 mg kg −1 . A simple mass balance calculation using the current water As level of 0.13 mg As L −1 suggested that 96% of the added arsenic was retained in the soil. When BRRI dhan 29 rice was grown in two successive years across this soil-As gradient, yield declined progressively from 7-9 to 2-3 t ha −1 with increasing soil-As concentration. The average yield loss over the 8 ha command area was estimated to be 16%. Rice-straw As content increased with increasing soil-As concentration; however, the toxicity of As to rice resulted in reduced grain-As concentrations in one of the 2 years. The likelihood of As-induced yield reductions and As accumulation in straw and grain has implications to agricultural sustainability, food quality and food security in As-affected regions throughout South and Southeast Asia.
The total arsenic content of 150 paddy rice samples collected from Barisal, Comilla, Dinajpur, Kaunia, and Rajshahi districts, and from the BRRI experimental station at Rajshahi city in the boro and aman seasons of 2000 was determined by hydride generation-inductively coupled plasma emission spectroscopy (ICP). Arsenic concentrations varied from 10 to 420 microg/kg at 14% moisture content. Rice yields and grain arsenic concentrations were 1.5 times higher in the boro (winter) than the summer (monsoon) season, consistent with the much greater use of groundwater for irrigation in the boro season. Mean values for the boro and aman season rices were 183 and 117 microg/kg, respectively. The variation in arsenic concentrations in rice was only partially consistent with the pattern of arsenic concentrations in drinking water tube wells. There was no evidence from yield or panicle sterility data of arsenic toxicity to rice. Processing of rice (parboiling and milling) reduced arsenic concentrations in rice by an average of 19% in 21 samples collected from households. Human exposure to arsenic through rice would be equivalent to half of that in water containing 50 microg/kg for 14% of the paddy rice samples at rice and water intake levels of 400 g and 4 L/cap/day, respectively.
Soil deficiencies of zinc (Zn) and boron (B) limit crop production in Nepal. Improving the micronutrient status of plants would increase yield and increase micronutrient content of the seeds, leading to better nutrition of the progeny crop and to improved human micronutrient nutrition. The primary micronutrient problem in grain legumes is B deficiency, while in rice (Oryza sativa), Zn deficiency is more important, and wheat (Triticum aestivum) suffers from both deficiencies. A series of field experiments was carried out over two seasons to compare soil fertilization and micronutrient seed priming as methods of improving Zn and B nutrition of each crop. Micronutrient treatments were evaluated for their effect on grain yield and grain micronutrient content. Soil B fertilization increased B content of the grain of lentil (Lens culinaris), chickpea (Cicer arietinum), and wheat by a factor of two to five, while increasing the yield of chickpea only. Soil fertilization with Zn had no effect on yield of any crop, but resulted in a small increase in Zn in wheat grain. Sowing micronutrient-primed seeds had no effect on yield or micronutrient content of the progeny seeds in most cases. During the first season, the primed chickpea seeds failed to emerge at either site, causing complete yield loss, but this negative effect was not observed in the second season with similar priming treatments at nearby sites, and no effect of priming on yield was observed with any other crop in either season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.