Stratigraphic correlation of fine-grained successions is not always straightforward. Complicating factors, such as unconformities, structural complexity, subsidence and especially minimal grain-size variation, make the application of traditional correlation methods to fine-grained successions problematic. Alternatively, the analysis of detailed geochemical data can allow for the determination of variations in sediment provenance, mineralogy, detrital flux and hydrothermal input. When compared with modelled clay input over time, these geochemical indicators can be used to determine changes in relative sea-level and palaeoclimate, allowing for the identification of clinoform surfaces. As an example, this study outlines detailed correlations of chemostratigraphic packages within the lower Triassic Montney Formation in Western Canada to demonstrate the effectiveness of chemostratigraphy in defining and correlating fine-grained clinoforms across a sedimentary basin. The data set used includes five wells and one outcrop succession, from which geochemical profiles were generated and tied directly to mineralogical data and well logs. These analyses reveal 13 distinct chemostratigraphic packages that correlate across the basin. Observed elemental and inferred mineralogical changes highlight trends in relative sea-level and palaeoclimate, as well as episodes of inferred hydrothermal input to the Montney basin. Cross-plots of La/Sm and Yb/Sm further suggest hydrothermal input as well as the scavenging of middle rare earth elements by phosphatic fish debris. Additionally, plots of La/Sm versus Yb/Sm, which show volcanic arc input within the Doig Formation, suggest an additional sediment source from the west during the Anisian. Pairing detrital and clay proxies demonstrates changes in relative sea-level and, at the Smithian/Spathian boundary, the lowest relative sea-level in the Montney Formation is observed, corresponding to a change in climate.
The ERCB/AGS has collected over 270 core samples from the Duvernay and Muskwa formations in Alberta and run a series of tests to characterize the formation for resource assessment. The geochemical and geological tests include adsorption isotherm, Rock-Eval/TOC, XRD whole rock and clay mineralogy, permeameter, porosimetry, thin section analysis and SEM imaging. The purpose of this talk is to discuss the regional geological and geochemical attributes of the Duvernay and to a lesser extent the Muskwa leading to a shale gas resource assessment. An important aspect of our study is that the samples were taken to represent a variety of lithofacies and colour variations, for example, and do not necessarily represent the best reservoir rocks. Our purpose is to reveal the attributes of rocks that have resource potential, or lack thereof, as opposed to identifying rocks with reservoir potential. The data will be presented using a series of maps and sections to show the spatial and temporal variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.