We demonstrate that a mutation in the homeobox gene, MSX1, causes a common developmental anomaly, familial tooth agenesis. Genetic linkage analyses in a family with autosomal dominant agenesis of second premolars and third molars identified a locus on chromosome 4p, where the MSX1 gene resides. Sequence analyses demonstrated an Arg31Pro missense mutation in the homeodomain of MSX1 in all affected family members. Arg 31 is a highly conserved homeodomain residue that interacts with the ribose phosphate backbone of target DNA. We propose that the Arg31 Pro mutatrion comprises MSX1 interactions, and suggest that MSX1 functions are critical for normal development of specific human teeth.
Framework monoclonal antibodies have identified a population of human lymphocytes that express the T3 glycoprotein but not the T-cell receptor (TCR) alpha- and beta-subunits. Chemical crosslinking experiments reveal that these lymphocytes express novel T3-associated polypeptides, one of which appears to be the product of the T gamma gene. The other polypeptide may represent a fourth TCR subunit, designated T delta.
Abstract-AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is expressed in most mammalian tissues including cardiac muscle. Among the multiple biological processes influenced by AMPK, regulation of fuel supply and energy-generating pathways in response to the metabolic needs of the organism is fundamental and likely accounts for the remarkable evolutionary conservation of this enzyme complex. By regulating the activity of acetyl-coenzyme A carboxylase, AMPK affects levels of malonyl-coenzyme A, a key energy regulator in the cell. AMPK is generally quiescent under normal conditions but is activated in response to hormonal signals and stresses sufficient to produce an increase in AMP/ATP ratio, such as hypoglycemia, strenuous exercise, anoxia, and ischemia. Once active, muscle AMPK enhances uptake and oxidative metabolism of fatty acids as well as increases glucose transport and glycolysis. Data from AMPK deficiency models suggest that AMPK activity might influence the pathophysiology and therapy of diabetes and increase heart tolerance to ischemia. Effects that are not as well understood include AMPK regulation of transcription. Different AMPK isoforms are found in distinct locations within the cell and have distinct functions in different tissues. A principal mode of AMPK activation is phosphorylation by upstream kinases (eg, LKB1). These kinases have a fundamental role in cell-cycle regulation and protein synthesis, suggesting involvement in a number of human disorders including cardiac hypertrophy, apoptosis, cancer, and atherosclerosis. The physiological role played by AMPK during health and disease is far from being clearly defined. Naturally occurring mutations affecting the nucleotide-sensing modules in the regulatory ␥ subunit of AMPK lead to enzyme dysregulation and inappropriate activation under resting conditions. Glycogen accumulation ensues, leading to human disease manifesting as cardiac hypertrophy, accessory atrioventricular connections, and degeneration of the physiological conduction system. Whether AMPK is a key participant or bystander in other disease states and whether its selective manipulation may significantly benefit these conditions remain important questions. (Circ Res. 2007;100:474-488.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.