1. 3′:5′-Cyclic nucleotide phosphodiesterase activity was measured in homogenates prepared from epididymal fat-pads and isolated fat-cells incubated in the absence and presence of insulin. 2. Homogenates of insulin-treated tissues showed an increase in phosphodiesterase activity compared with controls. No effect of insulin was observed when the hormone was added directly to homogenates. 3. There was kinetic evidence for the presence of two 3′:5′-cyclic nucleotide phosphodiesterases in adipose tissue. Insulin raised the maximal velocity of the low-Km enzyme and lowered the Km of the higher-Km enzyme. 4. It is suggested that the effect of insulin on adipose tissue phosphodiesterase accounts for the ability of this hormone to lower cyclic-AMP concentration in the tissue.
Rats from an inbred strain (NZR/Mh) were found to have high concentrations of glycogen in their livers, even after 24 h of starvation. Despite this, blood glucose concentrations were well maintained on starvation for up to 72 h. The primary defect is a deficiency of liver phosphorylase kinase, causing a lack of active glycogen phosphorylase, although total phosphorylase is normal. The intravenous injection of glucagon caused a rapid activation of cyclic AMP-dependent protein kinase in the liver, but no increase in either phosphorylase kinase or phosphorylase a activity. Although total glycogen synthase activity in the livers of affected rats was higher than normal, glycogen synthase in the active form was very low, presumably as a result of the high liver glycogen content. The condition is transmitted as autosomal recessive and, apart from hepatomegaly, the affected rats appear healthy.
Perfusion of normal rat livers under anoxic conditions or the addition of KCN to aerobic perfusions activated phosphorylase and stimulated glycogen breakdown and glucose output. Livers from rats with a deficiency of liver phosphorylase kinase (gsdlgsd) showed a much smaller activation of phosphorylase with anoxia or KCN and produced glucose at about half the rate of normal livers. The increase in phosphorylase a in gsd/gsd livers was insufficient to account for the increase in glucose output. The addition of KCN to normal hepatocytes, activated phosphorylase and stimulated glucose output almost as effectively as glucagon. Hepatocytes from gsd/gsd rats showed only a very small increase in phosphorylase a on the addition of KCN, and glucose output did not increase. We conclude that in the perfused liver, anoxia and KCN stimulate glycogen breakdown and glucose output, at least in part, by a mechanism that does not involve conversion of phosphorylase b to phosphorylase a. In isolated hepatocytes KCN stimulates glucose output only by increasing the content of phosphorylase a.
SUMMARY
The insulin content of the pancreas and the insulin-like activity of the blood serum are considerably higher in mice of the New Zealand obese strain than in normal controls.
The rate of glucose uptake by adipose tissue and hemi-diaphragms incubated in the absence of added insulin did not differ significantly in tissues from obese and normal mice and the stimulation of glucose uptake caused by addition of insulin was similar in tissues from the two strains. Insulin extracted from the pancreas of New Zealand obese mice stimulated glucose uptake by adipose tissue and muscle from obese mice to the same extent as an equivalent amount of porcine insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.