Cartilage tissue engineering relies on in vitro expansion of primary chondrocytes. Monolayer is the chosen culture model for chondrocyte expansion because in this system the proliferative capacity of chondrocytes is substantially higher compared to non-adherent systems. However, human articular chondrocytes (HACs) cultured as monolayers undergo changes in phenotype and gene expression known as "dedifferentiation." To gain a better understanding of the cellular mechanisms involved in the dedifferentiation process, our research focused on the characterization of the surface molecule phenotype of HACs in monolayer culture. Adult HACs were isolated by enzymatic digestion of cartilage samples obtained post-mortem. HACs cultured in monolayer for different time periods were analyzed by flow cytometry for the expression of cell surface markers with a panel of 52 antibodies. Our results show that HACs express surface molecules belonging to different categories: integrins and other adhesion molecules (CD49a, CD49b, CD49c, CD49e, CD49f, CD51/61, CD54, CD106, CD166, CD58, CD44), tetraspanins (CD9, CD63, CD81, CD82, CD151), receptors (CD105, CD119, CD130, CD140a, CD221, CD95, CD120a, CD71, CD14), ectoenzymes (CD10, CD26), and other surface molecules (CD90, CD99). Moreover, differential expression of certain markers in monolayer culture was identified. Up-regulation of markers on HACs regarded as distinctive for mesenchymal stem cells (CD10, CD90, CD105, CD166) during monolayer culture suggested that dedifferentiation leads to reversion to a primitive phenotype. This study contributes to the definition of HAC phenotype, and provides new potential markers to characterize chondrocyte differentiation stage in the context of tissue engineering applications.
Early (0-2 h) lactate clearance is an important and independent prognostic variable that should probably be incorporated in future decision schemes for the resuscitation of trauma patients.
Soluble human interleukin-6 receptor (sIL-6R) was measured in the serum of 30 healthy individuals, 32 individuals with monoclonal gammopathy of undetermined significance (MGUS), 20 patients with early multiple myeloma (MM) and 54 patients with overt MM. The serum activity recognized by an immunoradiometric assay was determined to be sIL-6R, because of its binding capacity to IL-6 and its molecular mass of 55 kDa. All sera of healthy individuals contained sIL-6R (mean value: 89 ng/ml, range 17-300 ng/ml). Serum sIL-6R levels were increased by 51% in patients with MGUS (mean value: 135 ng/ml, p < 0.005), by 44% in patients with early myeloma (mean value: 128 ng/ml, p < 0.001) and by 116% in patients with overt MM (mean value: 193 ng/ml, p < 0.001). In patients with MM, a complete lack of correlation (p > 0.7) was found between serum sIL-6R levels and other previously recognized prognostic factors in this disease, particularly serum IL-6 levels and those factors related to tumor cell mass. The independence of serum sIL-6R levels on tumor cell mass was directly demonstrated by studying four patients with MM treated with autologous bone marrow transplantation for periods of between 320 and 760 days. These levels were found to be remarkably stable and constant, independent of whether patients relapsed or achieved complete remission. Finally, physiological concentrations of sIL-6R were found to increase by tenfold the sensitivity of human myeloma cell lines to IL-6. These observations suggest a high control of the sIL-6R level in vivo, and, possibly, an important functional role of this circulating protein in patients with monoclonal gammopathies.
No abstract
We studied the prognostic significance of plasmablastic (PB) multiple myeloma (MM) in Eastern Cooperative Oncology Group Phase III trial E9486. Two reviewers independently reviewed 453 cases. They agreed on 37 PB (8.2%) cases and 416 non-PB cases, achieving an 85% concordance (P < .0001). These PB cases had significantly lower hemoglobin and serum albumin levels, higher calcium and β 2-microglobuin levels, and higher percentage BM plasma cells (PC) by immunofluorescence. They had higher bone marrow PC labeling indices, higher serum soluble interleukin-6 receptor (sIL-6R) levels, and a higher probability of ras mutations. Three treatment regimens were used: vincristine, bis-chloro-ethyl nitrosourea (BCNU) melphalan, cyclophosphamide, and prednisone (VBMCP) alone; VBMCP with added cyclophosphamide (HiCy); or recombinant interferon α 2 (rIFNα2). Although the numbers are low, patients with PB had a significantly lower response rate versus non-PB MM when treated with VBMCP (treated, 47.1% v nontreated, 66.5% [P = .015]). Patients with nonresponding PB had a significantly higher progression rate than non-PB cases (30.6%v 11.8% [P < .0001]), especially with VBMCP alone (35.3% v 15.8% [P = .002]), and with added HiCy (37.5% v 9.8% [P < .0001]), but not with added rIFNα2. Event-free and overall survival of PB MM was shorter (median years, 1.1 v 2.7 and 1.9 v 3.7, respectively [P < .0001 for both]). In multivariate analysis, PB classification was also highly prognostic. There is no survival difference between the patients who were classified as PB by both reviewers versus patients classified as PB by only one reviewer. We conclude that PB MM is a discrete entity associated with more aggressive disease and shortened survival. Tumor cell rasmutations and increased sIL-6R may contribute to a higher proliferation rate and reduced survival. There were significant improvements in response and progression with the addition of HiCy and rIFNα2 to VBMCP, but the numbers were small and improved survival could not be shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.