Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.
The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ 8 ) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues -a realisation of the Tycho-Gaia Astrometric Solution (TGAS) -and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr −1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr −1 . For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.
We investigate the performance of spherical wavelets in discriminating between standard inflationary (Gaussian) and non-Gaussian models. For the latter we consider small perturbations of the Gaussian model in which an artificially specified skewness or kurtosis is introduced through the Edgeworth expansion. By combining all the information present in all the wavelet scales with the Fisher discriminant, we find that the spherical Mexican Hat wavelets are clearly superior to the spherical Haar wavelets. The former can detect levels of skewness and kurtosis of ≈1 per cent for 33-arcmin resolution, an order of magnitude smaller than the latter. Also, as expected, both wavelets are better for discriminating between the models than the direct consideration of moments of the temperature maps. The introduction of instrumental white noise in the maps, S/N = 1, does not change the main results of this paper.
We present an estimation of the point source (PS) catalogue that could be extracted from the forthcoming ESA Planck mission data. We have applied the Spherical Mexican Hat Wavelet (SMHW) to simulated all‐sky maps that include cosmic microwave background (CMB), Galactic emission (thermal dust, free–free and synchrotron), thermal Sunyaev–Zel'dovich effect and PS emission, as well as instrumental white noise. This work is an extension of the one presented in Vielva et al. We have developed an algorithm focused on a fast local optimal scale determination, that is crucial to achieve a PS catalogue with a large number of detections and a low flux limit. An important effort has been also done to reduce the CPU time processor for spherical harmonic transformation, in order to perform the PS detection in a reasonable time. The presented algorithm is able to provide a PS catalogue above fluxes: 0.48 Jy (857 GHz), 0.49 Jy (545 GHz), 0.18 Jy (353 GHz), 0.12 Jy (217 GHz), 0.13 Jy (143 GHz), 0.16 Jy (100 GHz HFI), 0.19 Jy (100 GHz LFI), 0.24 Jy (70 GHz), 0.25 Jy (44 GHz) and 0.23 Jy (30 GHz). We detect around 27 700 PS at the highest frequency Planck channel and 2900 at the 30‐GHz one. The completeness level are: 70 per cent (857 GHz), 75 per cent (545 GHz), 70 per cent (353 GHz), 80 per cent (217 GHz), 90 per cent (143 GHz), 85 per cent (100 GHz HFI), 80 per cent (100 GHz LFI), 80 per cent (70 GHz), 85 per cent (44 GHz) and 80 per cent (30 GHz). In addition, we can find several PS at different channels, allowing the study of the spectral behaviour and the physical processes acting on them. We also present the basic procedure to apply the method in maps convolved with asymmetric beams. The algorithm takes ∼72 h for the most CPU time‐demanding channel (857 GHz) in a Compaq HPC320 (Alpha EV68 1‐GHz processor) and requires 4 GB of RAM memory; the CPU time goes as O[N italicR oN3/2pix log(Npix)], where Npix is the number of pixels in the map and N italicR o is the number of optimal scales needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.