The aim of this paper is to study the Lagrange interpolation on the unit circle taking only into account the separation properties of the nodal points. The novelty of this paper is that we do not consider nodal systems connected with orthogonal or paraorthogonal polynomials, which is an interesting approach because in practical applications this connection may not exist. A detailed study of the properties satisfied by the nodal system and the corresponding nodal polynomial is presented. We obtain the relevant results of the convergence related to the process for continuous smooth functions as well as the rate of convergence. Analogous results for interpolation on the bounded interval are deduced and finally some numerical examples are presented.
In the present paper, we delve into the study of nodal systems on the unit circle that meet certain separation properties. Our aim was to study the Hermite interpolation process on the unit circle by using these nodal arrays. The target was to develop the corresponding interpolation theory in order to make practical use of these nodal systems linked to certain mechanical models that fit these distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.