3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of the thymidine analog 5-bromo-2Ј-deoxyuridine (BrdU) concomitantly with L-DOPA for 2 weeks. A large number of BrdU-positive cells were found in the striatum and its output structures (globus pallidus, entopeduncular nucleus, and substantia nigra pars reticulata) in L-DOPA-treated rats that had developed dyskinesia. The vast majority (60 -80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications.
Summary Quantification of tissue properties is improved using the general proportionator sampling and estimation procedure: automatic image analysis and non‐uniform sampling with probability proportional to size (PPS). The complete region of interest is partitioned into fields of view, and every field of view is given a weight (the size) proportional to the total amount of requested image analysis features in it. The fields of view sampled with known probabilities proportional to individual weight are the only ones seen by the observer who provides the correct count. Even though the image analysis and feature detection is clearly biased, the estimator is strictly unbiased. The proportionator is compared to the commonly applied sampling technique (systematic uniform random sampling in 2D space or so‐called meander sampling) using three biological examples: estimating total number of granule cells in rat cerebellum, total number of orexin positive neurons in transgenic mice brain, and estimating the absolute area and the areal fraction of β islet cells in dog pancreas. The proportionator was at least eight times more efficient (precision and time combined) than traditional computer controlled sampling.
The proportionator is a novel and radically different approach to sampling with microscopes based on the well-known statistical theory (probability proportional to size-PPS sampling). It uses automatic image analysis, with a large range of options, to assign to every field of view in the section a weight proportional to some characteristic of the structure under study. A typical and very simple example, examined here, is the amount of color characteristic for the structure, marked with a stain with known properties. The color may be specific or not. In the recorded list of weights in all fields, the desired number of fields is sampled automatically with probability proportional to the weight and presented to the expert observer. Using any known stereological probe and estimator, the correct count in these fields leads to a simple, unbiased estimate of the total amount of structure in the sections examined, which in turn leads to any of the known stereological estimates including size distributions and spatial distributions. The unbiasedness is not a function of the assumed relation between the weight and the structure, which is in practice always a biased relation from a stereological (integral geometric) point of view. The efficiency of the proportionator depends, however, directly on this relation to be positive. The sampling and estimation procedure is simulated in sections with characteristics and various kinds of noises in possibly realistic ranges. In all cases examined, the proportionator is 2-15-fold more efficient than the common systematic, uniformly random sampling. The simulations also indicate that the lack of a simple predictor of the coefficient of error (CE) due to field-to-field variation is a more severe problem for uniform sampling strategies than anticipated. Because of its entirely different sampling strategy, based on known but non-uniform sampling probabilities, the proportionator for the first time allows the real CE at the section level to be automatically estimated (not just predicted), unbiased-for all estimators and at no extra cost to the user.
Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newly formed axonal sprouts are able to induce a protracted myelination response in adult CNS. We show that newly formed axonal sprouts, induced by lesion of the entorhino-hippocampal perforant pathway, have the ability to induce a myelination response in stratum radiatum and lucidum CA3. The lesion resulted in significant recruitment of newly formed myelinating cells, documented by incorporation of the proliferation marker bromodeoxyuridine into chondroitin sulphate NG2 expressing cells in stratum radiatum and lucidum CA3 early after lesion, and the occurrence of a 28% increase in the number of oligodendrocytes, of which some had incorporated bromodeoxyuridine, 9 weeks post-lesion. Additionally, a marked increase (41%) in myelinated fibres was detected in silver stained sections. Interestingly, these apparently new fibres achieved the same axon diameter as unlesioned mice but myelin thickness remained thinner than normal, suggesting that the sprouting axons in stratum radiatum and lucidum CA3 were not fully myelinated 9 weeks after lesion. Our combined results show that sprouting axons provide a strong stimulus to oligodendrocyte lineage cells to engage actively in the myelination processes in the adult CNS.
SummaryThe smooth fractionator was introduced in 2002. The combination of a smoothing protocol with a computer-aided stereology tool provides better precision and a lighter workload. This study uses simulation to compare fractionator sampling based on the smooth design, the commonly used systematic uniformly random sampling design and the ordinary simple random sampling design. The smooth protocol is performed using biased information from crude (but fully automatic) image analysis of the fields of view. The different design paradigms are compared using simulation in three different cell distributions with reference to sample size, noise and counting frame position. Regardless of clustering, sample size or noise, the fractionator based on a smooth design is more efficient than the fractionator based on a systematic uniform random design, which is more efficient than a fractionator based on simple random design. The fractionator based on a smooth design is up to four times more efficient than a simple random design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.