Sewage sludge (SS) is a by-product of processes conducted during the treatment of wastewater. It can be used in many different ways. One of them is the use of SS in agriculture as an organic fertiliser, but the main criterion for such use is the heavy metals (HMs) content. Knowledge of the total content of HMs in SS does not translate into the danger it may pose. The toxicity of metals is largely dependent on their mobility. The mobility of SS from three different wastewater treatment plants (WWTP) of the Świętokrzyskie Voivodeship, which were characterised by an increased zinc content, was examined in this study. The aim of the study was to prove whether the high level of zinc in SS actually disqualifies the possibility of its natural use. Calculations were made for five environmental hazard indicators: the geoaccumulation index of heavy metals in soil (Igeo), potential environmental risk indicator (PERI), risk assessment code (RAC), environmental risk factor (ERF), and the authors’ own environmental risk determinant (ERD) indicator. The obtained results show how important mobility analysis is when assessing the possibility of natural use of SS.
Sewage sludge (SS) from wastewater treatment plants (WWTPs) has important soil-forming and fertilizing properties. However, it may not always be used for this purpose. One of the main reasons why SS cannot be used for natural purposes is its heavy metal (HM) content. SS from the wastewater treatment plant in Poland was subjected to an analysis of the potential anthropogenic hazard of HMs, especially in terms of their mobility and accumulation in soil. Calculations were made for the concentrations of HMs in SS from the analyzed wastewater treatment plants and in arable soil from measurement points in places of its potential use. The geoaccumulation index (GAI), potential environmental risk index (PERI), risk assessment code (RAC) and environmental risk determinant (ERD) were calculated. Then the values of the indicators were compared with the mobility of HMs, which was the highest risk of soil contamination. It was shown that a high level of potential risk and geoaccumulation indicators did not necessarily disqualify the use of SS, provided that HMs were in immovable fractions.
Mobility of heavy metals has been investigated in sewage sludge as well as in ashes obtained by incineration of this sludge at the temperature range of 850-1000 °C. In the ashes, heavy metals created the most durable connections with immobile fractions which did not have a major significance in a toxicological aspect. A clear influence of temperature on the forms of occurrence of heavy metals in fractions has not been proved. In the range of applied incineration temperatures, only the mobilities of copper and zinc increased with the increase of incineration temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.