The global urgency to improve STEM education may be driven by environmental and social impacts of the twentyfirst century which in turn jeopardizes global security and economic stability. The complexity of these global factors reach beyond just helping students achieve high scores in math and science assessments. Friedman (The world is flat: A brief history of the twenty-first century, 2005) helped illustrate the complexity of a global society, and educators must help students prepare for this global shift. In response to these challenges, the USA experienced massive STEM educational reforms in the last two decades. In practice, STEM educators lack cohesive understanding of STEM education. Therefore, they could benefit from a STEM education conceptual framework. The process of integrating science, technology, engineering, and mathematics in authentic contexts can be as complex as the global challenges that demand a new generation of STEM experts. Educational researchers indicate that teachers struggle to make connections across the STEM disciplines. Consequently, students are often disinterested in science and math when they learn in an isolated and disjoined manner missing connections to crosscutting concepts and real-world applications. The following paper will operationalize STEM education key concepts and blend learning theories to build an integrated STEM education framework to assist in further researching integrated STEM education.
Background: Teachers can have a significant impact on student interest and learning in science, technology, engineering, and math (STEM) subjects and careers. Teacher self-efficacy can also significantly affect student learning. Researchers investigated the effects of teacher professional development and integrated STEM curriculum development on teacher self-efficacy. Participants in the study included high school science and engineering technology teachers enrolled in a National Science Foundation-ITEST project called Teachers and Researchers Advancing Integrated Lessons in STEM (TRAILS). The TRAILS program sought to prepare teachers to integrate STEM content using engineering design, biomimicry, science inquiry, and 3D printing as pedagogical approaches. Teachers learned within a community of practice working alongside industry partners and college faculty. The purpose of the study was to investigate the impact of the 70 h of professional development to train three cohorts of teachers over 3 years on teacher self-efficacy. The research design utilized a quasi-experimental nonequivalent control group approach, including an experimental group and an untreated control group. Results: Measurements on beliefs about teacher self-efficacy were collected on pretest, posttest, and delayed posttest survey assessments. Researchers analyzed the T-STEM survey results for teaching self-efficacy using the Wilcoxson signed-rank test for detecting significant differences. Science teachers showed a significant increase in teacher self-efficacy comparing the pretest and delayed posttest scores after TRAILS professional development and STEM lesson implementation (p = .001, effect size = .95). Additionally, significant differences between groups (science experimental vs science control group teachers) using the Wilcoxon rank-sum test were detected from pretest to posttest (p = .033, effect size = .46), posttest to delayed posttest (p = .029, effect size = .47), and pretest to delayed posttest (p = .005, effect size = .64). There were no significant differences detected in the control group. Engineering technology teachers showed no significant differences between the pretest, posttest, and delayed posttest self-efficacy scores. Conclusions: The results indicate the science teachers' self-efficacy increased after professional development and after lesson implementation. Potential implications from this research suggest that the science teacher participants benefited greatly from learning within a community of practice, engaging in science practices, and using science knowledge to solve a real-world problem (engineering design).
Social, motivational, and instructional factors impact students’ outcomes in STEM learning and their career paths. Based on prior research and expectancy-value theory, the study further explored how multiple factors affect students in the context of integrated STEM learning. High school STEM teachers participated in summer professional development and taught integrated STEM to students during the following school year, where scientific inquiry, biomimicry, 3D printing technology, and engineering design were integrated as instructional strategies. Surveys were conducted to measure teacher self-efficacy and outcome expectancy. Student STEM attitudes (self-efficacy and expectancy-value beliefs), 21st century skills, STEM career awareness, and STEM knowledge achievement were also measured using a survey and a custom-made knowledge test. Based on expectancy-value theory and literature, a path model was developed and tested to investigate causal relationships between these factors. The results revealed direct and indirect effects of teacher self-efficacy and outcome expectancy on students’ STEM knowledge achievements. Student STEM attitudes (self-efficacy and expectancy-value beliefs), 21st century skills, and STEM career awareness also significantly influenced STEM knowledge achievement directly or indirectly.
This article describes the development of a 21st century skills instrument for high school students. The first round of development of the instrument was crafted from four rubrics created to assess communication, collaboration, critical thinking, and creativity within project-based learning (PBL) activities. After an exploratory factor analysis, the pilot study results revealed multiple survey items loading across multiple factors requiring a revised instrument. The research team revised the instrument and added more items by using language from P21 standards documents. The revised 21st century skills instrument of 50 items was administered to 276 high school students participating in a STEM program. The final Exploratory Factor Analysis yielded a total of 30 survey items loaded across the four subscales with strong internal consistency within the constructs. This instrument can be used as a baseline and achievement measure for high school students' 21st century skills.
This study investigated the sustainability of an integrated STEM education program. Two US high school science teachers and an engineering technology teacher sustained implementation of an integrated STEM curriculum after the conclusion of the funded program, TRAILS. Class observations were conducted to examine how the teachers implemented the integrated STEM curriculum and how they maintained integrated STEM teaching in a science and engineering technology education (ETE) teacher pair using science and engineering technology shared practices. After the integrated STEM lesson, their students’ academic achievements were compared to those of the students who previously participated in the project. The results reveal that the students showed no difference from the previous TRAILS students in terms of academic achievements as measured by STEM knowledge test scores, which may indicate that the teachers successfully maintained consistency and effectiveness of the implementation. Additionally, a twenty-first century skills survey was newly conducted to examine students’ growth in confidence in twenty-first century skills after they were taught the integrated STEM lesson. The students showed increased confidence in critical thinking, which indicates that the students benefitted from the teachers’ instructions even after the conclusion of the funded program and the absence of support. Based on the findings from the teachers’ experiences of multiple years of integrated STEM teaching, the study discusses how to better support teachers for the successful implementation of an integrated STEM curriculum as a sustainable education program in secondary schools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.