In vivo 31p nuclear magnetic resonance (NMR) was used to characterize the effect of the N form (NO3 vs. NH4) and the external pH (4, 6, and 8), on the intracellular pH of root tips (0-5 mm) and root segments (5-30 mm). Ammonium-grown root tips were the most sensitive to changes in the external pH. In vivo 15N NMR was used to characterize the pathway of primary ammonium assimilation in the a m m o n i u m -g r o w n roots and to compare the activity of the apical and more-basal root parts. The kinetics of 15NH4 + incorporation showed that primary assimilation in both root tips and root segments followed the glutamine synthetase (GS) pathway. In agreement with the reported gradient of GS along the seminal root of maize, incorporation of label into glutamine amide was more rapid in tips than in segments. It is suggested that this higher GS activity increases the endogenous proton production and thus contributes to the greater dependence of the cytoplasmic pH on the external pH in the ammoniumtreated root tips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.