The solution structures of the binuclear Mn centers in arginase, Mn catalase, and the Mn-substituted forms of the Fe enzymes ribonucleotide reductase and hemerythrin have been determined using X-ray absorption spectroscopy (XAS). X-ray absorption near edge structure (XANES) spectra for these proteins were compared to those obtained for Mn(II) models. The Mn model spectra show an inverse correlation between the XANES peak maximum and the root-mean-square (RMS) deviation in metal-ligand bond lengths. For these complexes, the XANES maxima appear to be more effective than the 1s --> 3d areas as an indicator of metal-site symmetry. Arginase and Mn-substituted ribonucleotide reductase have symmetric nearest neighbor environments with low RMS deviation in bond length, while Mn catalase and Mn-substituted hemerythrin appear to have a larger RMS bond length deviation. The 1s --> 3d areas for arginase and Mn-substituted ribonucleotide reductase are consistent with six coordinate Mn, while the 1s --> 3d areas for Mn catalase and Mn-substituted hemerythrin are larger, suggesting that one or both of the Mn ions are five-coordinate in these proteins. Extended x-ray absorption fine structure (EXAFS) spectra were used to determine the Mn2 core structure for the four proteins. In order to quantitate the number of histidine residues bound to the Mn2 centers, EXAFS data for the crystallographically characterized model hexakis-imidazole Mn(II) dichloride tetrahydrate were used to calibrate the Mn-imidazole multiple scattering interactions. These calibrated parameters allowed the outer shell EXAFS to be fit to give a lower limit on the number of bound histidine residues. The EXAFS spectra for Mn-substituted ribonucleotide reductase and arginase are nearly identical, with symmetric Mn-nearest neighbor environments and outer shell scattering consistent with a lower limit of one histidine per Mn2 core. In contrast, the EXAFS data for Mn catalase and Mn-substituted hemerythrin show two distinct Mn-nearest neighbor shells, modeled as Mn-O at ca. 2.1 A and Mn-N at ca. 2.3 A, and outer shell carbon scattering consistent with a lower limit of ca. 2-3 His residues per Mn2 core. Only Mn catalase shows clear evidence for Mn...Mn scattering. The observed Mn...Mn distance is 3.53 A, which is significantly longer than the approximately 3.3 A distances that are typically observed for Mn(II)2 cores with two single atom bridges, but which is typical of the distances seen in Mn(II)2 cores having one single atom bridge (e.g., aqua or hydroxo) together with one or two carboxylate bridges. The absence of EXAFS-detectable Mn...Mn interactions for the other three proteins suggests either that there are no single atom bridges in these cases or that the Mn...Mn interactions are more disordered.
We used 2',7'-bis(carboxyethyl)-5(6)-carboxyflourescein (BCECF), a pH-sensitive fluorescent dye, to study intracellular pH (pH(i)) regulation in neurons in CO(2) chemoreceptor and nonchemoreceptor regions in the pulmonate, terrestrial snail, Helix aspersa. We studied pH(i) during hypercapnic acidosis, after ammonia prepulse, and during isohydric hypercapnia. In all treatment conditions, pH(i) fell to similar levels in chemoreceptor and nonchemoreceptor regions. However, pH(i) recovery was consistently slower in chemoreceptor regions compared with nonchemoreceptor regions, and pH(i) recovery was slower in all regions when extracellular pH (pH(e)) was also reduced. We also studied the effect of amiloride and DIDS on pH(i) regulation during isohydric hypercapnia. An amiloride-sensitive mechanism was the dominant pH(i) regulatory process during acidosis. We conclude that pH(e) modulates and slows pH(i) regulation in chemoreceptor regions to a greater extent than in nonchemoreceptor regions by inhibiting an amiloride-sensitive Na(+)/H(+) exchanger. Although the phylogenetic distance between vertebrates and invertebrates is large, similar results have been reported in CO(2)-sensitive regions within the rat brain stem.
Background and Aims Inflammatory bowel disease (IBD) refers to two chronic inflammatory diseases of the intestine: ulcerative colitis and Crohn’s disease. IBD results from environmental factors (e.g. bacterial antigens) triggering a dysregulated immune response in genetically predisposed hosts. While the basis of IBD is incompletely understood, a number of recent studies have implicated defective innate immune responses in the pathogenesis of IBD. In this regard, there is much interest in therapies that activate innate immunity (e.g. recombinant GM-CSF). Methods In this study, we screened expression and function of circulating leukocyte GM-CSF receptor (CD116) mRNA and surface protein in 52 IBD patients and 52 healthy controls. Results Our results show that both granulocyte and monocyte CD116 levels, but not CD114 or IL-3Rα, were significantly repressed in IBD compared to control (p<0.001) and disease controls (irritable bowel syndrome, IBS, p<0.001; rheumatoid arthritis, RA, p<0.025). IBD-associated CD116 repression was more prominent in patients with ulcerative colitis compared to Crohn’s disease (p<0.05), was independent of disease activity (p>0.05) and was not influenced by current medications (p>0.05). Receiver operating characteristic (ROC) curve analysis revealed that leukocyte CD116 expression is a sensitive (85%) and specific (92%) biomarker for IBD. Moreover, granulocyte CD116-mediated function (phosphorylation of STAT3) paralleled decreased expression of CD116 in IBD granulocytes compared to control (p<0.001). Conclusion These studies identify repression of CD116 as a distinguishing feature of IBD and implicate an associated defect in innate immune responses toward GM-CSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.