The demand for micro holes, micro-moulds and micro forms continues to grow as high-tech industries demand miniaturized products. Sectors such as aerospace, microelectronics, medicine, and even the automotive sector, are just some examples of enterprises that are taking advantage of micro-manufacturing technologies. Within this framework, the need to adapt the knowledge of macro-scale manufacturing processes to micro-scale is evident. This paper evaluates, through theoretical principles and experimental work, the machine-tool motion accuracy of a medium machining centre specializing in the micro-milling of elliptical cavities on aluminium workpieces. Measurements were taken to evaluate: deviations and/or errors in geometric accuracy, and the geometric quality errors caused by motion control and control software. The results show that, due to the structure and inertia of the machine tool, acceleration and deceleration do indeed affect the accuracy and quality of the micro-part. Furthermore, errors from motion control and/or control software are present because differences in the moving carriages create instabilities.
The use of conventional machining processes has been subject to important decline probably due to the increment in the use of emerging technologies. Therefore, the main applications of these traditional processes, such as automotive industry, are in crisis. In order to have a chance to compete successfully in the new trends, the machining industry must meet the needs of alternative sectors such as biomedical field. The aim of this study is to prove the capacity of micro-milling, by machining complex micro-cavities on aluminum workpiece using a conventional milling machine. Results are obtained by evaluating accuracy and geometric features. This study finds that the feed per tooth is a significant factor in order to obtain better results. The use of coolant increases the tool wear and therefore dimensional errors. This scope is a potential opportunity to reutilize the conventional machines from a new approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.