Biochemical characteristics of the association of Vif with cellular membranes and its membrane topology were also examined. These studies also investigate the roles of the N and C termini and highly conserved regions of Vif in membrane targeting.
Human immunodeficiency virus type 1 (HIV-1) encodes a Vif protein which is important for virus replication and infectivity. Vif is a cytoplasmic protein which exists in both membrane-associated and soluble forms. The membrane-associated form is an extrinsic membrane protein which is tightly associated with the cytoplasmic side of membranes. We have analyzed the mechanism of membrane targeting of Vif and its role in HIV-1 replication. Mutagenesis studies demonstrate that C-terminal basic domains are required for membrane association. Vif mutations which disrupt membrane association also inhibit HIV-1 replication, indicating that membrane localization of Vif is likely to be required for its biological activity in vivo. Membrane binding of Vif is almost completely abolished by trypsin treatment of membranes. These results demonstrate that membrane localization of Vif requires C-terminal basic domains and interaction with a membrane-associated protein(s). This interaction may serve to direct Vif to a specific cellular site, since immunofluorescence staining and plasma membrane fractionation studies show that Vif is localized predominantly to an internal cytoplasmic compartment rather than to the plasma membrane. The mechanism of membrane targeting of Vif is different in some respects from that of other extrinsic membrane proteins, such as Ras, Src, and MARCKS, which utilize a basic domain together with a lipid modification for membrane targeting. Membrane targeting of Vif is likely to play an important role in HIV-1 replication and thus may be a therapeutic target.
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is important for virion infectivity. Previous studies have shown that vif mutant HIV-1 virions are defective in their ability to synthesize proviral DNA in vivo. Here, we examine the role of Vif in viral DNA synthesis in the endogenous reverse transcriptase (RT) reaction, an in vitro assay in which virions synthesize viral DNA by using endogenous viral RNA as a template. vif mutant virions showed a significant reduction in endogenous RT activity despite similar levels of exogenous RT activity. Analysis of the viral DNA products on agarose gels demonstrated that this reflects reduced synthesis of short minus-and plus-strand DNA products in addition to those of full genomic length. Quantitative PCR analysis of endogenous reverse transcription provided further evidence for reduced formation of both initial and completed reverse transcripts. Vif had no effect on genomic RNA dimerization or the stability of the RNA dimer linkage. These results suggest that Vif is important for an early event after virus entry but preceding or during the early stages of viral DNA synthesis. This may be due to an intrinsic effect on reverse transcription or a preceding postentry event(s), such as virion uncoating or disassembly of the virion core. Drugs targeted to Vif function may provide a new therapeutic approach to inhibiting HIV-1 reverse transcription.
The stalled fork protection pathway mediated by breast cancer 1/2 (BRCA1/2) proteins is critical for replication fork stability. However, it is unclear whether additional mechanisms are required to maintain replication fork stability. We describe a hitherto unknown mechanism, by which the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily-A containing DEAD/H box-1 (SMARCAD1) stabilizes active replication forks, that is essential to maintaining resistance towards replication poisons. We find that SMARCAD1 prevents accumulation of 53BP1-associated nucleosomes to preclude toxic enrichment of 53BP1 at the forks. In the absence of SMARCAD1, 53BP1 mediates untimely dissociation of PCNA via the PCNA-unloader ATAD5, causing frequent fork stalling, inefficient fork restart, and accumulation of single-stranded DNA. Although loss of 53BP1 in SMARCAD1 mutants rescues these defects and restores genome stability, this rescued stabilization also requires BRCA1-mediated fork protection. Notably, fork protection-challenged BRCA1-deficient naïve- or chemoresistant tumors require SMARCAD1-mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.