The cross section for coherent J/ψ photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, X n 0 n , is measured with the CMS experiment in ultra-peripheral PbPb collisions at √ s NN = 2.76 TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 µb −1 , collected during the 2011 PbPb run. The J/ψ mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is dσ coh X n 0 n /dy(J/ψ) = 0.36 ± 0.04 (stat) ± 0.04 (syst) mb in the rapidity interval 1.8 < |y| < 2.3. Using a model for the relative rate of coherent photoproduction processes, this X n 0 n measurement gives a total coherent photoproduction cross section of dσ coh /dy(J/ψ) = 1.82 ± 0.22 (stat) ± 0.20 (syst) ± 0.19 (theo) mb. The data strongly disfavour the impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/ψ photoproduction in γ + Pb interactions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing.
IntroductionPhoton-induced reactions are dominant in Ultra-Peripheral Collisions (UPC) of heavy ions, which involve electromagnetic interactions at large impact parameters of the colliding nuclei. Because of the extremely high photon flux in ultra-peripheral heavy-ion collisions which is proportional to Z 2 , where Z is the charge of the nucleus, photon-nucleus collisions at the LHC are abundant [1][2][3]. Furthermore, in UPCs the LHC can reach unprecedented photon-lead and photon-proton center-of-mass energies.Vector meson photoproduction in UPCs has received recent interest [3]. Exclusive J/ψ photoproduction off protons is defined by the reaction γ + p → J/ψ + p, with the characteristic features that, apart from the vector meson in the final state, no other particles are produced and the vector meson has a mean transverse momentum significantly lower than in inclusive reactions. Another characteristic feature is that in exclusive photoproduction the quantum numbers of the final state can be studied unambiguously. The γ + p → J/ψ + p production process has been studied by H1 and ZEUS collaborations at the electron-proton collider HERA [4][5][6], by the CDF collaboration in proton-antiproton collisions at the Tevatron [7], and by the ALICE and LHCb collaborations at the LHC, in proton-lead [8] and proton-proton collisions [9], respectively. Since the cross section of photoproduced vector mesons such as J/ψ, ψ(2S), and Υ(nS), in leading order perturbative QCD, is proportional to the gluon density squared in the target [10,11], the study of such diffractive processes in high-energy collisions is expected to provide insights into the role played by gluons in hadronic matter. As an example, a J/ψ produced at rapidity y is sensitive to the gluon distribution at x = (M J/ψ / √ s)e ±y at hard scales Q 2 ∼ M 2 J/ψ /4, where M J/ψ is the J/ψ mass,
The CMS detectorThe...