Speciation requires the acquisition of reproductive isolation, and the circumstances under which this could evolve are of great interest. Are new species formed after the acquisition of generalized incompatibility arising between physically separated populations, or may they arise as a result of the action of disruptive selection beginning with the divergence of a rather restricted set of gene loci? Here we apply the technique of amplified fragment length polymorphism (AFLP) analysis to an intertidal snail whose populations display a cline in shell shape across vertical gradients on rocky shores. We compare the FST values for 306 AFLP loci with the distribution of FST estimated from a simulation model using values of mutation and migration derived from the data. We find that about 5% of these loci show greater differentiation than expected, providing evidence of the effects of selection across the cline, either direct or indirect through linkage. This is consistent with expectations from nonallopatric speciation models that propose an initial divergence of a small part of the genome driven by strong disruptive selection while divergence at other loci is prevented by gene flow. However, the pattern could also be the result of differential introgression after secondary contact.
The most common classification of modes of speciation begins with the spatial context in which divergence occurs: sympatric, parapatric or allopatric. This classification is unsatisfactory because it divides a continuum into discrete categories, concentrating attention on the extremes, and it subordinates other dimensions on which speciation processes vary, such as the forces driving differentiation and the genetic basis of reproductive isolation. It also ignores the fact that speciation is a prolonged process that commonly has phases in different spatial contexts. We use the example of local adaptation and partial reproductive isolation in the intertidal gastropod Littorina saxatilis to illustrate the inadequacy of the spatial classification of speciation modes. Parallel divergence in shell form in response to similar environmental gradients in England, Spain and Sweden makes this an excellent model system. However, attempts to demonstrate 'incipient' and 'sympatric' speciation involve speculation about the future and the past. We suggest that it is more productive to study the current balance between local adaptation and gene flow, the interaction between components of reproductive isolation and the genetic basis of differentiation.
Parallel evolution of similar phenotypes provides strong evidence for the operation of natural selection. Where these phenotypes contribute to reproductive isolation, they further support a role for divergent, habitat-associated selection in speciation. However, the observation of pairs of divergent ecotypes currently occupying contrasting habitats in distinct geographical regions is not sufficient to infer parallel origins. Here we show striking parallel phenotypic divergence between populations of the rocky-shore gastropod, Littorina saxatilis, occupying contrasting habitats exposed to either wave action or crab predation. This divergence is associated with barriers to gene exchange but, nevertheless, genetic variation is more strongly structured by geography than by ecotype. Using approximate Bayesian analysis of sequence data and amplified fragment length polymorphism markers, we show that the ecotypes are likely to have arisen in the face of continuous gene flow and that the demographic separation of ecotypes has occurred in parallel at both regional and local scales. Parameter estimates suggest a long delay between colonization of a locality and ecotype formation, perhaps because the postglacial spread of crab populations was slower than the spread of snails. Adaptive differentiation may not be fully genetically independent despite being demographically parallel. These results provide new insight into a major model of ecologically driven speciation.
Genome scans using large numbers of randomly selected markers have revealed a small proportion of loci that deviate from neutral expectations and so may mark genomic regions that contribute to local adaptation. Measurements of sequence differentiation and identification of genes in these regions is important but difficult, especially in organisms with limited genetic information available. We have followed up a genome scan in the marine gastropod, Littorina saxatilis, by searching a bacterial artificial chromosome library with differentiated and undifferentiated markers, sequencing four bacterial artificial chromosomes and then analysing sequence variation in population samples for fragments at, and close to the original marker polymorphisms. We show that sequence differentiation follows the patterns expected from the original marker frequencies, that differentiated markers identify independent and highly localized sites and that these sites fall outside coding regions. Two differentiated loci are characterized by insertions of putative transposable elements that appear to have increased in frequency recently and which might influence expression of downstream genes. These results provide strong candidate loci for the study of local adaptation in Littorina. They demonstrate an approach that can be applied to follow up genome scans in other taxa and they show that the genome scan approach can lead rapidly to candidate genes in nonmodel organisms.
Abstract. The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.