The growth conditions to achieve group-III-nitride nanocolumns and nanocolumnar heterostructures by plasma-assisted molecular beam epitaxy are studied. The evolution of the nanocolumnar morphology with the growth conditions is determined for (Ga,Al)N and (In,Ga)N nanocolumns. The mechanisms behind the nanocolumnar growth under high N-rich conditions are clarified in the sense that no seeding or catalysts are required, as it is the case in the vapour-liquid-solid model that applies to most nanocolumns grown by metal organic chemical vapour deposition, either with group-III nitrides, II -VI or III -V compounds. Some examples of nanocolumnar heterostructures are given, like quantum disks and cylindrical nanocavities. Preliminary results on the growth of arrays of ordered GaN nanocolumns are reported.
Efficient infrared light emitters integrated on the mature Si technology platform could lead to on-chip optical interconnects as deemed necessary for future generations of ultrafast processors as well as to nanoanalytical functionality. Toward this goal, we demonstrate the use of GaAs-based nanowires as building blocks for the emission of light with micrometer wavelength that are monolithically integrated on Si substrates. Free-standing (In,Ga)As/GaAs coaxial multishell nanowires were grown catalyst-free on Si(111) by molecular beam epitaxy. The emission properties of single radial quantum wells were studied by cathodoluminescence spectroscopy and correlated with the growth kinetics. Controlling the surface diffusivity of In adatoms along the NW side-walls, we improved the spatial homogeneity of the chemical composition along the nanowire axis and thus obtained a narrow emission spectrum. Finally, we fabricated a light-emitting diode consisting of approximately 10(5) nanowires contacted in parallel through the Si substrate. Room-temperature electroluminescence at 985 nm was demonstrated, proving the great potential of this technology.
The morphology of GaN samples grown by plasma-assisted molecular beam epitaxy on Si(111) was systematically studied as a function of impinging Ga/N flux ratio and growth temperature (730–850 °C). Two different growth regimes were identified: compact and nanocolumnar. A growth diagram was established as a function of growth parameters, exhibiting the transition between growth regimes, and showing under which growth conditions GaN cannot be grown due to thermal decomposition and Ga desorption. Present results indicate that adatoms diffusion length and the actual Ga/N ratio on the growing surface are key factors to achieve nanocolumnar growth.
We investigate the axial and radial growth of GaN nanowires upon a variation of the Ga flux during molecular beam epitaxial growth. An increase in the Ga flux promotes radial growth without affecting the axial growth rate. In contrast, a decrease in the Ga flux reduces the axial growth rate without any change in the radius. These results are explained by a kinetic growth model that accounts for both the diffusion of Ga adatoms along the side facets toward the nanowire tip and the finite amount of active N available for the growth. The model explains the formation of a new equilibrium nanowire radius after increasing the Ga flux and provides an explanation for two well-known but so far not understood experimental facts: the necessity of effectively N-rich conditions for the spontaneous growth of GaN nanowires and the increase in nanowire radius with increasing III/V flux ratio.
The inñuence of the substrate temperature, III/V ñux ratio, and mask geometry on the selective área growth of GaN nanocolumns is investigated. For a given set of growth conditions, the mask design (diameter and pitch of the nanoholes) is found to be crucial to achieve selective growth within the nanoholes. The local III/V flux ratio within these nanoholes is a key factor that can be tuned, either by modifying the growth conditions or the mask geometry. On the other hand, some specific growth conditions may lead to selective growth but not be suitable for subsequent vertical growth. With optimized conditions, ordered GaN nanocolumns can be grown with a wide variety of diameters. In this
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.