The street lighting is one of major components in total energy consumption in cities. The paper is focused on a concept of street lamp control systems and function organization with remote monitoring, to reduce maintenance costs and energy consumption. A new approach to the definition of functional strategy organization for outdoor lighting systems is introduced in the paper. Proposed functional strategies are based on four efficiency classes of building automation and control systems (BACS) defined in the EN 15323 standard. They have been formulated, analysed and eventually implemented and verified in real experiment street lighting installation. This outdoor lighting system, designed by the authors, based on LonWorks (the ISO/IEC EN 14908) platform with a power line communication aimed to control high-pressure sodium lamps. The street lamps are integrated nodes of a building management system (BMS). The results of experimental tests for the proposed functional strategies, implemented with various control scenarios, show that they provide a great potential in reducing energy consumption by street lighting installations. In particular, the energy use can be reduced even by 45 % in comparison to conventional street lighting system, especially without the use of monitoring and control.
Effective Energy Management with an active Demand Response (DR) is crucial for future smart energy system. Increasing number of Distributed Energy Resources (DER), local microgrids and prosumers have an essential and real influence on present power distribution system and generate new challenges in power, energy and demand management. A relatively new paradigm in this field is transactive energy (TE), with its value and market-based economic and technical mechanisms to control energy flows. Due to a distributed structure of present and future power system, the Internet of Things (IoT) environment is needed to fully explore flexibility potential from the end-users and prosumers, to offer a bid to involved actors of the smart energy system. In this paper, new approach to connect the market-driven (bottom-up) DR program with current demand-driven (top-down) energy management system (EMS) is presented. Authors consider multi-agent system (MAS) to realize the approach and introduce a concept and standardize the design of new Energy Flexometer. It is proposed as a fundamental agent in the method. Three different functional blocks have been designed and presented as an IoT platform logical interface according to the LonWorks technology. An evaluation study has been performed as well. Results presented in the paper prove the proposed concept and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.