The effects of systemic administration of nicotine or the nicotinic antagonist mecamylamine on the midbrain dopamine (DA) systems of the rat were studied with single cell recording techniques. Dopamine cells of the zona compacta, substantia nigra (ZC-SN) and the ventral tegmental area (VTA) were identified by their characteristic action potentials, antidromic stimulation methodology and conventional histological procedures. Firing rates as well as firing patterns were determined from computer-generated interspike interval histograms describing burst-firing in relation to single-spike firing. A larger proportion of burst-firing DA cells was found in the VTA when compared with the ZC-SN area. (-)-Nicotine bitartrate (0.5 mg kg-1 i.p.) not only increased the firing rate of ZC-SN neurons but also the amount of burst firing of the ZC-SN neurons and VTA neurons, respectively. Mecamylamine HCl (4.0 mg kg-1 i.p.) decreased the firing rate of VTA cells which, in principle, indicates a tonic nicotinic input in this area. The increase in firing rate of central DA neurons following nicotine administration was found to be associated with increased bursting of the burst firing cells whereas, in contrast, the non-bursting neurons did not respond with burst-firing. Generally, the correlation between nicotine induced changes in firing rate and in burst-firing activity, respectively, was found to be low for midbrain DA neurons. These observations, in conjunction with the previous demonstration of nicotinic receptors in these areas, indicate the existence of a nicotinic input, specifically regulating the firing pattern of these central DA cells. This neuromodulatory effect of nicotine may be significant for its behavioural stimulant action.(ABSTRACT TRUNCATED AT 250 WORDS)
Electrical stimulation techniques were employed in the chloral hydrate anaesthetized male rat to evaluate if the pontine noradrenergic nucleus locus coeruleus can influence the activity of midbrain dopamine neurons in the ventral tegmental area and zona compacta, substantia nigra. Single-pulse locus coeruleus stimulation evoked an excitation, followed by an inhibition, of the electrical activity of single midbrain dopamine neurons. Neither of these responses were observed in animals pretreated with reserpine, implicating noradrenaline as a mediator. The alpha 1-adrenoceptor antagonist prazosin decreased the excitation, while other adrenoceptor antagonists were without general effect. Burst-type stimulation produced only a more long-lasting inhibition. The influence from the locus coeruleus on midbrain dopamine neurons could be important in behavioural situations involving novelty and reward, and might also be of importance for the actions of psychotropic drugs.
Previous studies have indicated excitatory adrenergic effects on midbrain dopamine systems. To investigate the cellular mechanisms, intracellular recordings were made from neurons in perfused, oxygenated slices of male rat midbrain. Electrophysiological and pharmacological parameters were used to identify cells as principal (presumably dopaminergic) neurons as opposed to secondary (presumably GABAergic) neurons in the substantia nigra zona compacta and the ventral tegmental area. Noradrenalin (10-100 microM) hyperpolarized 57% of all principal cells and depolarized 36%. Sulpiride (100-1000 nM), a dopamine D2 receptor antagonist, completely blocked noradrenalin-induced hyperpolarizations (six of six cells). In sulpiride, noradrenalin depolarized 58% of all principal neurons and had no effect in 42%; this effect was mimicked by the alpha-adrenergic agonist phenylephrine (10-30 microM) which depolarized 43 of 72 cells. The alpha 1 receptor antagonist prazosin (30-100 nM) completely blocked the membrane depolarization produced by either noradrenalin or phenylephrine in all cells tested, whereas alpha 2- and beta-adrenergic agents had no effect. In voltage clamp, phenylephrine evoked an inward current (at -60 mV) and reduced cord conductance by 0.81 +/- 0.14 nS (n = 4). Inward current evoked by phenylephrine became outward at -96 +/- 8 mV, which is near the membrane reversal potential for potassium as predicted by the Nernst equation. Phenylephrine also depolarized secondary cells and increased the frequency of spontaneous GABAA receptor-mediated postsynaptic potentials recorded in both principal and secondary cells.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.