To determine whether the photoreceptors change structurally and functionally during aging, and to analyze whether pigmentation in the retinal pigment epithelium might be a contributing factor. Young, adult, and aged C57BL/6 and Balb/c mice (1, 4, and 17 months of age) were housed under a 12-h light/12-h dark cycle, with an ambient light intensity at the eye level of the mice of 85 +/- 18 lux. Scotopic single-flash and photopic-flicker electroretinograms (ERGs) after complete dark adaptation were used to assess rod and cone function, respectively. Numbers of rod photoreceptors were counted in plastic sections, and rhodopsin levels were measured using absorption difference spectrophotometry. Numbers and types of cones were determined using lectin staining in retinal flatmounts and cone-specific antibodies in radial frozen sections. Young pigmented C57BL/6 and nonpigmented Balb/c mice had similar numbers of rods. In both mouse strains, there was an overall decline in rod photoreceptor number during aging, which was more pronounced in albino mice. Rod cell numbers correlated with a drop in the overall amount of rhodopsin and a reduction in the maximum a-wave of the rod ERG. The number of short-wavelength cones was unaffected by age and pigmentation, whereas an age-related decline was observed in mid-wavelength (MWL) cones in albino, but not in pigmented mice. In contrast, MWL cone function was reduced during aging in both strains. Flicker-fusion frequency was determined to be approximately 10 Hz lower in albino animals, which is due to prolonged b-waves in these ERGs. Age-related changes were found in both photoreceptor systems, rods and cones, and in both pigmented and nonpigmented mice. However, rod photoreceptors appear to be more susceptible to both aging and the lack of pigmentation, when compared to cones. These results may help as we begin to understand certain age-related retinal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.