Systematic conservation assessment and conservation planning are two distinct fields of conservation science often confused as one and the same. Systematic conservation assessment is the technical, often computer-based, identification of priority areas for conservation. Conservation planning is composed of a systematic conservation assessment coupled with processes for development of an implementation strategy and stakeholder collaboration. The peer-reviewed conservation biology literature abounds with studies analyzing the performance of assessments (e.g., area-selection techniques). This information alone, however can never deliver effective conservation action; it informs conservation planning. Examples of how to translate systematic assessment outputs into knowledge and then use them for "doing" conservation are rare. South Africa has received generous international and domestic funding for regional conservation planning since the mid-1990s. We reviewed eight South African conservation planning processes and identified key ingredients of best practice for undertaking systematic conservation assessments in a way that facilitates implementing conservation action. These key ingredients include the design of conservation planning processes, skills for conservation assessment teams, collaboration with stakeholders, and interpretation and mainstreaming of products (e.g., maps) for stakeholders. Social learning institutions are critical to the successful operationalization of assessments within broader conservation planning processes and should include not only conservation planners but also diverse interest groups, including rural landowners, politicians, and government employees.
The fungal skin disease, chytridiomycosis (caused by Batrachochytrium dendrobatidis and B. salamandrivorans), has caused amphibian declines and extinctions globally since its emergence. Characterizing the host immune response to chytridiomycosis has been a focus of study with the aim of disease mitigation. However, many aspects of the innate and adaptive arms of this response are still poorly understood, likely due to the wide range of species' responses to infection. In this paper we provide an overview of expected immunological responses (with inference based on amphibian and mammalian immunology), together with a synthesis of current knowledge about these responses for the amphibian-chytridiomycosis system. We structure our review around four key immune stages: (1) the naïve immunocompetent state, (2) immune defenses that are always present (constitutive defenses), (3) mechanisms for recognition of a pathogen threat and innate immune defenses, and (4) adaptive immune responses. We also evaluate the current hot topics of immunosuppression and immunopathology in chytridiomycosis, and discuss their respective roles in pathogenesis. Our synthesis reveals that susceptibility to chytridiomycosis is likely to be multifactorial. Susceptible amphibians appear to have ineffective constitutive and innate defenses, and a late-stage response characterized by immunopathology and Bd-induced suppression of lymphocyte responses. Overall, we identify substantial gaps in current knowledge, particularly concerning the entire innate immune response (mechanisms of initial pathogen detection and possible immunoevasion by Bd, degree of activation and efficacy of the innate immune response, the unexpected absence of innate leukocyte infiltration, and the cause and role of late-stage immunopathology in pathogenesis). There are also gaps concerning most of the adaptive immune system (the relative importance of B and T cell responses for pathogen clearance, the capacity and extent of immunological memory, and specific mechanisms of pathogen-induced immunosuppression). Improving our capacity for amphibian immunological research will require selection of an appropriate Bd-susceptible model species, the development of taxon-specific affinity reagents and cell lines for functional assays, and the application of a suite of conventional and emerging immunological methods. Despite current knowledge gaps, immunological research remains a promising avenue for amphibian conservation management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.