Retinopathy of prematurity (ROP) is a multifactorial vasoproliferative retinal disorder that increases in incidence with decreasing gestational age. Recently, an association between hyperglycemia and severe ROP was found in extremely low birth weight infants (ELBWI). The purpose of this study was to evaluate the possible relation between hyperglycemia and ROP at any stage in very low birth weight infants (VLBWI). We analyzed the data of 201 VLBWI. The incidence of ROP and hyperglycemia was detected and the χ2 test was applied to investigate the association between the two variables. The Clinical Risk Index for Babies (CRIB) score was attributed as a marker of illness severity. The incidence of ROP and hyperglycemia in VLBWI was 35.3 and 19.4%, respectively. ROP developed more frequently in hyperglycemic infants (p < 0.001). The gestational age, birth weight, and Apgar scores were significantly lower, the CRIB score was higher in ROP patients. In hyperglycemic ROP patients the CRIB score was significantly higher compared to euglycemic ROP patients (mean (SD) 8.1 (4.2) vs. 5.5 (3.3); p < 0.01). A logistic regression model revealed that gestational age (OR 0.59; 95% CI 0.46–0.76; p < 0.001) and hyperglycemia (OR 3.15; 95% CI 1.12–8.84; p < 0.05) are independent risk factors in ROP development. When ELBWI were analyzed separately, gestational age (OR 0.38; 95% CI 0.20–0.72; p < 0.01) and CRIB score (OR 1.58; 95% CI 1.02–2.45; p < 0.05) were found as significant contributors. Further studies are needed to elucidate the pathophysiological role of hyperglycemia in the development of vasoproliferative retinal disorder.
Rodent leptin is secreted by adipocytes and acutely regulates appetite and chronically regulates body weight. Mechanisms for leptin secretion in cultured adipocytes were investigated. Acutely, energy-producing substrates stimulated leptin secretion about twofold. Biologically inert carbohydrates failed to stimulate leptin secretion, and depletion of intracellular energy inhibited leptin release. There appears to be a correlation between intracellular ATP concentration and the rate of leptin secretion. Insulin increased leptin secretion by an additional 25%. Acute leptin secretion is calcium dependent. When incubated in the absence of calcium or in the presence of intracellular calcium chelators, glucose plus insulin failed to stimulate leptin secretion. In contrast, basal leptin secretion is secreted spontaneously and is calcium independent. Adipocytes from fatter animals secrete more leptin, even in the absence of calcium, compared with cells from thinner animals. Acute stimulus-secretion coupling mechanisms were then investigated. The potassium channel activator diazoxide and the nonspecific calcium channel blockers nickel and cadmium inhibited acute leptin secretion. These studies demonstrate that intracellular energy production is important for acute leptin secretion and that potassium and calcium flux may play roles in coupling intracellular energy production to leptin secretion.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence in the nervous system and peripheral organs, including the mammary gland. Previously, we have shown that PACAP38 is present in the human milk at higher levels than in respective blood samples. However, it is not known how PACAP levels and the expression of PAC1 receptor change during lactation. Therefore, the aim of our study was to investigate PACAP38-like immunoreactivity (PACAP38-LI) in human colostrums and transitional and mature milk during lactation and to compare the expression of PAC1 receptors in lactating and non-lactating mammary glands. We found that PACAP38-LI was significantly higher in human colostrum samples than in the transitional and mature milk. PACAP38-LI did not show any significant changes within the first 10-month period of lactation, but a significant increase was observed thereafter, up to the examined 17th month. Weak expression of PAC1 receptors was detected in non-lactating sheep and human mammary glands, but a significant increase was observed in the lactating sheep samples. In summary, the present study is the first to show changes of PACAP levels in human milk during lactation. The presence of PACAP in the milk suggests a potential role in the development of newborn, while the increased expressions of PAC1 receptors on lactating breast may indicate a PACAP38/PAC1 interaction in the mammary gland during lactation.
The oxygen-induced retinopathy (OIR) is a well-established rodent model of retinopathy of prematurity (ROP), which is one of the most common causes of childhood visual impairment affecting preterm babies. Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to have neuroprotective effects. Several studies have revealed the presence of PACAP and its receptors in the retina and reported its protective effects in ischemic and diabetic retinopathy. In this study, we investigated whether PACAP administration can influence the vascular changes in the rat OIR model. OIR was generated by placing the animals in daily alternating 10/50 oxygen concentrations from postnatal day (PD) 0 to PD14 then returned them to room air. Meanwhile, animals received PACAP or saline intraperitoneally or intravitreally from PD1 to PD8 or on PD11, PD14, and PD17, respectively. On PD19 ± 1, the retinas were isolated and the vessels were visualized by isolectin staining. The percentage of avascular to whole retinal areas and the number of branching points were measured. Change in cytokine expression was also determined. Intravitreal treatment with PACAP remarkably reduced the extent of avascular area compared to the non- and saline-treated OIR groups. Intraperitoneal PACAP injection did not influence the vascular extent. Retinal images of room-air controls did not show vascular alterations. No changes in the number of vessel branching were observed after treatments. Alterations in cytokine profile after local PACAP injection further supported the protective role of the peptide. This is the first study to examine the effects of PACAP in ROP. Although the exact mechanism is still not revealed, the present results show that PACAP treatment can ameliorate the vascular changes in the animal model of ROP.
PACAP38-LI levels show sensitive change during normal pregnancy and delivery. Our findings suggest that the fetal organs actively synthesize PACAP. Further investigations are required to elucidate the physiological importance of the alterations observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.