A narrowband sodium resonance wind-temperature lidar (SRWTL) has been deployed at Poker Flat Research Range, Chatanika, Alaska (PFRR, 65° N, 147° W). Based on the Weber narrowband SRWTL, the PFRR SRWTL transmitter was upgraded with a state-of-the-art solid-state tunable diode laser as the seed laser. The PFRR SRWTL currently makes simultaneous measurements in the zenith and 20° off-zenith towards the north with two transmitted beams and two telescopes. Initial results for both nighttime and daytime measurements are presented. We review the performance of the PFRR SRWTL in terms of seven previous and currently operating SRWTLs. The transmitted power from the pulsed dye amplifier (PDA) is comparable with other SRWTL systems (900 mW). However, while the efficiency of the seeding and frequency shifting is comparable to other SRWTLs the efficiency of the pumping is lower. The uncertainties of temperature and wind measurements induced by photon noise at the peak of the layer with a 5 min, 1 km resolution are estimated to be ~1 K and 2 m/s for nighttime conditions, and 10 K and 6 m/s for daytime conditions. The relative efficiency of the zenith receiver is comparable to other SRWTLs (90–97%), while the efficiency of the north off-zenith receiver needs further optimization. An upgrade of the PFRR SRWTL to a full three-beam system with zenith, northward and eastward measurements is in progress.
Polar mesospheric clouds (PMCs) occur in the summer near 82 ‐85km altitude due to seasonal changes of temperature and humidity. However, water vapor and associated PMCs have also been observed associated with rocket exhaust. The effects of this rocket exhaust on the temperature of the upper mesosphere are not well understood. To investigate these effects, 220 kg of pure water was explosively released at 85 km as part of the Super Soaker sounding rocket experiment on the night of January 25–26, 2018 at Poker Flat Research Range (65°N, 147°W). A cloud formed within 18 s and was measured by a ground‐based Rayleigh lidar. The peak altitude of the cloud appeared to descend from 92 to 78 km over 3 min. Temperatures leading up to the release were between 197 and 232 K, about 50 K above the summertime water frost point when PMCs typically occur. The apparent motion of the cloud is interpreted in terms of the expansion of the explosive release. Analysis using a water vapor radiative cooling code coupled to a microphysical model indicates that the cloud formed due to the combined effects of rapid radiative cooling (∼25 K) by meter‐scale filaments of nearly pure water vapor (∼1 ppv) and an increase in the frost point temperature (from 150 to 200 K) due to the high concentration of water vapor. These results indicate that water exhaust not only acts as a reservoir for mesospheric cloud production but also actively cools the mesosphere to induce cloud formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.