The US fire service has become acutely aware of the need to clean PPE after fires. However, there is concern that damage from repeated cleaning may impact critical protection from fireground risk. Using a protocol that included repeated simulated fireground exposures (between 0 cycles and 40 cycles) and/or repeated cleaning with techniques common in the fire service, we found that several important protective properties of NFPA 1971 compliant turnout gear are significantly changed. Outer shell and thermal liner tear strength showed a statistically significant reduction when laundered as compared to wet or dry decontamination. Larger changes in outer shell tear strength resulted when the coat closure incorporated hook & dee clasps as compared with garments using zippered closures. Total Heat Loss was reduced for all samples that underwent any form of cleaning while Thermal Protective Performance was only increased in the gear that was laundered. These results suggest that some important protective properties of bunker gear can be decreased after repeated exposure/cleaning cycles relative to their levels when tested in a new condition. For the specific materials tested, outer shell trap tear strength in the fill direction and seam strength dropped below NFPA 1971 requirements after 40 laundering cycles. The findings for this study may have utility for setting preconditions for the measurement of certain performance properties in future editions of NFPA 1971.
This research identifies laboratory test methods designed to advance assessment of the effects of structural firefighter gloves on a firefighter's ability to perform tasks with their hands. Two new hand dexterity test methods are discussed: a modified tool test for measuring glove effects on gross or whole hand motor control, and a novel cylinder lift method for evaluating glove effects on fine or fingertip hand dexterity. Data generated by testing a representative group of structural firefighter and other responder gloves are used to show that these new test methods provide less variable data and a more useful and informative assessment of the effects of glove construction on hand dexterity than that provided by standard small pin pegboard tests. Based on these comparisons, a combination of the newly developed tool and cylinder lift test methods are recommended for evaluating the effects of structural firefighter gloves on hand dexterity in standards used as the basis of certifying the performance of structural firefighter clothing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.