The fluoropyrimidine anticancer drugs, especially 5-fluorouracil (5-FU) and capecitabine, are frequently prescribed for several types of cancer, including breast, colorectal, head and neck and gastric cancer. In the current drug labels of 5-FU and capecitabine in the European Union and the United States, no adaptive dosing strategies are incorporated for polymorphic metabolism of 5-FU. Although treatment with fluoropyrimidines is generally well tolerated, a major clinical limitation is that a proportion of the treated population experiences severe, sometimes life-threatening, fluoropyrimidine-related toxicity. This toxicity is strongly affected by interindividual variability in activity of dihydropyrimidine dehydrogenase (DPD), the main metabolic enzyme for inactivation of fluoropyrimidines, with an estimated 3%-8% of the population being partially DPD deficient. A reduced functional or abrogated DPD enzyme is often caused by genetic polymorphisms in DPYD, the gene encoding for DPD, and heterozygous carriers of such DPYD polymorphisms have a partial DPD deficiency. When these partially DPD deficient patients are treated with a full dose of fluoropyrimidines, they are generally exposed to toxic levels of 5-FU and its metabolites, and the risk of developing severe treatment-related toxicity is therefore significantly increased.Currently, functional and clinical validity is well established for four DPYD variants (DPYD*2A, c.2846A>T, c.1679T>G and c.1236G>A), as those variants have retrospectively and in a large population study prospectively been shown to be associated with increased risk of fluoropyrimidine-associated toxicity. Patient safety of fluoropyrimidine treatment can be significantly improved by pre-emptive screening for DPYD genotype variants and dose reductions in heterozygous DPYD variant allele carriers, thereby normalizing 5-FU exposure. Based on the critical appraisal of currently available data, adjusting the labels of capecitabine and 5-FU by including recommendations on pre-emptive screening for DPYD variants and DPYD genotype-guided dose adjustments should be the new standard of care.
The variation in the rate of decline of plasma HIV-1 RNA between patients after the initiation of a quadruple drug regimen could be explained by differences in exposure to NFV or SQV. Determination of k could be used to optimise further antiretroviral drug therapy and may be a first tool to assess antiretroviral activities of new or increasing doses of drugs administered in combination regimens. Furthermore, our data suggest that exposure to antiretroviral drugs should be incorporated in mathematical models to describe HIV-1 dynamics in more detail.
Both MIBG treatment regimens were equally effective in the palliation of symptoms, but duration of response tended to be much longer with the radioactive compound. However, the unlabeled compound provided a simpler treatment, eg, in elderly patients and those in poor condition, without the need for isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.