Abstract. Atomic and molecular data for the transitions of a number of astrophysically interesting species are summarized, including energy levels, statistical weights, Einstein A-coefficients and collisional rate coefficients. Available collisional data from quantum chemical calculations and experiments are extrapolated to higher energies (up to E/k ∼ 1000 K). These data, which are made publically available through the WWW at http://www.strw.leidenuniv.nl/∼moldata, are essential input for non-LTE line radiative transfer programs. An online version of a computer program for performing statistical equilibrium calculations is also made available as part of the database. Comparisons of calculated emission lines using different sets of collisional rate coefficients are presented. This database should form an important tool in analyzing observations from current and future (sub)millimetre and infrared telescopes.
Aims. The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. Methods. We present a computer program to calculate the intensities of atomic and molecular lines produced in a uniform medium, based on statistical equilibrium calculations involving collisional and radiative processes and including radiation from background sources. Optical depth effects are treated with an escape probability method. The program is available on the World Wide Web at http://www.sron.rug.nl/∼vdtak/radex/index.shtml. The program makes use of molecular data files maintained in the Leiden Atomic and Molecular Database (LAMDA), which will continue to be improved and expanded. Results. The performance of the program is compared with more approximate and with more sophisticated methods. An Appendix provides diagnostic plots to estimate physical parameters from line intensity ratios of commonly observed molecules. Conclusions. This program should form an important tool in analyzing observations from current and future radio and infrared telescopes.
Aims. Photodissociation by UV light is an important destruction mechanism for carbon monoxide (CO) in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth dependence and isotope-selective nature of this process.Methods. We present a photodissociation model based on recent spectroscopic data from the literature, which allows us to compute depth-dependent and isotope-selective photodissociation rates at higher accuracy than in previous work. The model includes self-shielding, mutual shielding and shielding by atomic and molecular hydrogen, and it is the first such model to include the rare isotopologues C 17 O and 13 C 17 O. We couple it to a simple chemical network to analyse CO abundances in diffuse and translucent clouds, photon-dominated regions, and circumstellar disks. Results. The photodissociation rate in the unattenuated interstellar radiation field is 2.6 × 10 −10 s −1 , 30% higher than currently adopted values. Increasing the excitation temperature or the Doppler width can reduce the photodissociation rates and the isotopic selectivity by as much as a factor of three for temperatures above 100 K. The model reproduces column densities observed towards diffuse clouds and PDRs, and it offers an explanation for both the enhanced and the reduced N( 12 CO)/N( 13 CO) ratios seen in diffuse clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.