Purpose
To construct a pain classification model using binary logistic regression to calculate pain probability and monitor pain based on heart rate variability (HRV) and photoplethysmography (PPG) parameters.
Methods
Heat stimulation was used to simulate pain for modeling the pain generation process, and electrocardiography and PPG signals were recorded simultaneously. After signal analysis, statistical analysis was performed using SPSS to determine the parameters that were significant for pain. Thereafter, a pain classification model with HRV and PPG parameters was established using binary logistic regression.
Results
The sensitivity and specificity of the pain classification model were 60.0% and 72.0%, respectively. When pain occurred, the probability calculated using the pain classification model increased from < 50% to > 50%. When the pain was relieved, the probability decreased to < 50%. The probability of pain was consistent with the numeric rating scale value, which indicated that the model can correctly determine the presence of pain.
Conclusion
This pain classification model has sufficient robustness and adaptability to be applied to different healthy people for classification and monitoring. This model is helpful in establishing a real-time pain monitoring system to improve pain management for patients in the postoperative intensive care unit and patient-controlled analgesia and provide a reference for doctors regarding medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.