Density Functional Theory calculations were used to study Mg, Si, Cr, Mn, Fe, Co, Ni, and Cu interstitial configurations in Al. Energies of these elements in (100) dumbbell and octahedral configurations were determined. Results show that it is energetically favourable for metal alloying element atoms to replace Al selfinterstitials if the alloying atoms are smaller than the Al atoms, as expected. The system energy can thus be decreased by up to 2 eV. The difference between the energies of (100) dumbbell and octahedral configurations is only a few tenth eV for the alloys with metallic alloying elements. For Si, the difference can be up to 0.9 eV. This exceptional behavior of Si is most likely due to its angularly dependent bonding characteristics. Short ab-initio Molecular Dynamics simulations were performed on Mg and Si interstitials to allow these systems to evolve into different interstitial configurations rather than just the (100) dumbbell and octahedral configurations. For Si an alternative configuration with tetrahedral-like coordination was found. Consequences of the calculation results for radiation-induced segregation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.