Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms (SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected--including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas--the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.
Because of the stochastic way in which lineages sort during speciation, gene trees may differ in topology from each other and from species trees. Surprisingly, assuming that genetic lineages follow a coalescent model of within-species evolution, we find that for any species tree topology with five or more species, there exist branch lengths for which gene tree discordance is so common that the most likely gene tree topology to evolve along the branches of a species tree differs from the species phylogeny. This counterintuitive result implies that in combining data on multiple loci, the straightforward procedure of using the most frequently observed gene tree topology as an estimate of the species tree topology can be asymptotically guaranteed to produce an incorrect estimate. We conclude with suggestions that can aid in overcoming this new obstacle to accurate genomic inference of species phylogenies.
Although multiple gene sequences are becoming increasingly available for molecular phylogenetic inference, the analysis of such data has largely relied on inference methods designed for single genes. One of the common approaches to analyzing data from multiple genes is concatenation of the individual gene data to form a single supergene to which traditional phylogenetic inference procedures - e.g., maximum parsimony (MP) or maximum likelihood (ML) - are applied. Recent empirical studies have demonstrated that concatenation of sequences from multiple genes prior to phylogenetic analysis often results in inference of a single, well-supported phylogeny. Theoretical work, however, has shown that the coalescent can produce substantial variation in single-gene histories. Using simulation, we combine these ideas to examine the performance of the concatenation approach under conditions in which the coalescent produces a high level of discord among individual gene trees and show that it leads to statistically inconsistent estimation in this setting. Furthermore, use of the bootstrap to measure support for the inferred phylogeny can result in moderate to strong support for an incorrect tree under these conditions. These results highlight the importance of incorporating variation in gene histories into multilocus phylogenetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.