We report on the measurement of the γp → J/ψp cross section from Eγ = 11.8 GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section dσ/dt has an exponential slope of 1.67 ± 0.39 GeV −2 at 10.7 GeV average energy. The LHCb pentaquark candidates P + c can be produced in the s-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions B(P + c → J/ψp).
Results from the tandem mirror experiment are described. The configuration of axial density and potential profiles are created and sustained by neutral-beam injection and gas fueling. Plasma confinement in the center cell is shown to be improved by the end plugs by as much as a factor of 9. The electron temperature is higher than that achieved in our earlier 2XIIB single-cell mirror experiment.PACS numbers: 52.55. Mg, 52.55.Ke This Letter reports the first results obtained from the tandem mirror experiment (TMX) at the Lawrence Livermore Laboratory. Steady-state tandem-mirror plasmas have been produced and an electrostatic barrier that improves plasma confinement has been observed. The tandem-mirror configuration 1 ' 2 can enhance the performance of a magnetic-mirror thermonuclear reactor. Such a reactor would produce power in a cylindrical, high-/3, magnetic solenoid. End losses from this center cell are reduced by electrostatic endplug barriers of positive potential, which turn back those low-energy ions which escape through the magnetic mirror. These potential barriers are established on both ends of the center cell by high-density, high-temperature, mirror-confined plasmas, which have a larger ambipolar potential than does the center-cell plasma.Earlier tandem-mirror experiments, 3 in which plasma guns were used to establish end-plug densities larger than those in the center cell, have produced potential wells. Langmuir-probe measurements indicated that the magnitude and scaling of the potential-well depth is consistent with theoretical predictions. Our results demonstrate that we can produce and sustain a tandem-mirror plasma configuration by use of neutral beams to fuel the end plugs and gas to fuel the center cell. This method can be extrapolated to continuously operated systems. Our experiments further demonCee coil Baseball coilSolenoid coils Octupole coil -Plasma flux tube 1132 Neutral beam injectors Startup plasma guns FIG. 1. Schematic diagram of TMX magnet and neutral-beam system.
An analytic technique for calculating magnetic-moment jumps Δμ of particles in magnetic traps, previously derived for particular two-dimensional vacuum fields, is generalized to nonvacuum fields of arbitrary complexity and applied to high-β mirror machines. The size of a jump depends on the behavior of the magnetic-field strength B (s) near the singularities of B in the complex s plane, where real s measures position along a field line. It is demonstrated that an intrinsic complication of mirror-machine magnetic configurations is the presence of multiple singularities of B, which become closely spaced for field lines near the axis. An expansion in r2 is used to determine Δμ in the closely spaced regime. The analytic theory is compared with results from a particle-orbit code for several axisymmetric nonvacuum fields, and is found to be in excellent agreement in both the well separated and closely spaced singularity regimes. Finite-β effects are examined using axisymmetric model fields derived from the long, thin equilibrium approximation, with parameters representative of present (2XIIB) and future (MFTF) mirror experiments. It is shown that increasing β appreciably lowers the maximum energy at which particles are confined. The effect is particularly significant if the plasma length is small compared with the vacuum field axial scale length and if the gyroradius is small compared with the plasma radius. The degradation is substantially reduced when the gyroradius at the energy limit is comparable to the plasma radius.
In thermal-barrier experiments in the tandem mirror experiment upgrade, axial confinement times of 50 to 100 ms have been achieved. During enhanced confinement we measured the thermal-barrier potential profile using a neutral-particle-beam probe. The experimental data agree qualitatively and quantitatively with the theory of thermal-barrier formation in a tandem mirror.
The GlueX experiment at Je↵erson Lab has been designed to study photoproduction reactions with a 9-GeV linearly polarized photon beam. The energy and arrival time of beam photons are tagged using a scintillator hodoscope and a scintillating fiber array. The photon flux is determined using a pair spectrometer, while the linear polarization of the photon beam is determined using a polarimeter based on triplet photoproduction. Charged-particle tracks from interactions in the central target are analyzed in a solenoidal field using a central straw-tube drift chamber and six packages of planar chambers with cathode strips and drift wires. Electromagnetic showers are reconstructed in a cylindrical scintillating fiber calorimeter inside the magnet and a lead-glass array downstream. Charged particle identification is achieved by measuring energy loss in the wire chambers and using the flight time of particles between the target and detectors outside the magnet. The signals from all detectors are recorded with flash ADCs and/or pipeline TDCs into memories allowing trigger decisions with a latency of 3.3 µs. The detector operates routinely at trigger rates of 40 kHz and data rates of 600 megabytes per second. We describe the photon beam, the GlueX detector components, electronics, data-acquisition and monitoring systems, and the performance of the experiment during the first three years of operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.