Strength properties of most sedimentary and metamorphic rocks are known to vary with direction. Knowledge of this so-called rock anisotropy is of utmost importance for reliability analysis and engineering design. The purpose of this paper is twofold. First, we propose a formulation of the Hoek-Brown (HB) failure criterion, which calculates strength anisotropy using a non-uniform scaling of the stress tensor. We use two scaling factors, 𝐶 N and 𝐶 S , to link the orientation of the anisotropy planes with the loading direction. As we assume isotropic parameters for intact rock, our HB model formulation is relatively easy to use and has the additional advantage that it does not demand any modifications to the HB failure criterion. Second, we embed our HB model formulation in a Bayesian framework and illustrate its power and usefulness using experimental data of anisotropic rock samples published in the literature. Results demonstrate that our HB model formulation predicts accurately measured peak strengths of rocks with different degrees of anisotropy, confining stresses and anisotropy orientations. The uncertainty in peak strength of anisotropic rocks can be quite large, reiterating the need for an explicit treatment of strength anisotropy uncertainty in rock mechanics studies. The Bayesian methodology is general-purpose, and, as such, can help better inform geotechnical engineers, contractors and other professionals about rock conditions and design reliability and assist decision makers in determining the overall risks of engineering structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.