We demonstrate the efficient boundary lubricating properties of human whole saliva (HWS) in a soft hydrophobic rubbing contact, consisting of a poly(dimethylsiloxane) (PDMS) ball and a PDMS disk. The influence of applied load, entrainment speed and surface roughness was investigated for mechanically stimulated HWS. Lubrication by HWS results in a boundary friction coefficient of l % 0.02, two orders of magnitude lower than that obtained for water. Dried saliva on the other hand results in l % 2-3, illustrating the importance of hydration for efficient salivary lubrication. Increasing the surface roughness increases the friction coefficient for HWS, while it decreases that for water. The boundary lubricating properties of HWS are less sensitive to saliva treatment than are its bulk viscoelastic properties. Centrifugation and ageing of HWS almost completely removes the shear thinning and elastic nature observed for fresh HWS. In contrast, the boundary friction coefficients are hardly affected, which indicates that the high-M w (supra-)molecular structures in saliva, which are expected to be responsible for its rheology, are not responsible for its boundary lubricating properties. The saliva-coated PDMS surfaces form an ideal model system for ex-vivo investigations into oral lubrication and how the lubricating properties of saliva are influenced by other components like food, beverages, oral care products and pharmaceuticals.
The lubricating behavior of the weakly charged short-side-chain glycoprotein mucin "Orthana" (Mw=0.55 MDa) has been investigated between hydrophobic and hydrophilic PDMS substrates using soft-contact tribometry. It was found that mucin facilitates lubrication between hydrophobic PDMS surfaces, leading to a 10-fold reduction in boundary friction coefficient for rough surfaces. The presence of mucin also results in a shift of the mixed lubrication regime to lower entrainment speeds. The observed boundary lubrication behavior of mucin was found to depend on the bulk concentration, and we linked this to the structure and dynamics of the adsorbed mucin films, which are assessed using optical waveguide light spectroscopy. We observe a composite structure of the adsorbed mucin layer, with its internal structure governed by entanglement. The film thickness of this adsorbed layer increases with concentration, while the boundary friction coefficient for rough surfaces was found to be inversely proportional to the thickness of the adsorbed film. This link between lubrication and structure of the film is consistent with a viscous boundary lubrication mechanism, i.e., a thicker adsorbed film, at a given sliding speed, results in a lower local shear rate and, hence, in a lower local shear stress. The estimated local viscosities of the adsorbed layer, derived from the friction measurements and the polymer layer density, are in agreement with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.