The present research is concerned with some numerical developments and practical application of a physically based numerical model FreshWaterSheds that incorporates a finite element solution to the steady/transient problems of the joint ground/surface fresh/salt water flows in inland and coastal regulated watersheds. The proposed model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach. Infiltration rates, overland flows and evapotranspiration processes are considered by diffuse discharge from surface water, unsaturated subsoil and groundwater table. New improvements also allow for the management of surface water flow control through the capacity of diversion on flooding zones of catchment areas, as well as on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the flooding hazard of Aznalcóllar toxic spillages. This flooding disaster was caused by the sequential ruptures of the dikes of two mining residual reservoirs of a pyrite mine, releasing about 10•10 6 m 3 of contaminated wastewater and mining sludge onto the Guadiamar River. The numerical model was adapted to the wastewater and sludge properties of both sudden spillages, as well as to the river bed, the flooded zones and the underneath alluvial aquifer. The model simulation and calibration were made during the date of this hydrological hazard to the likely discharges and dual hydrograph produced by the sudden twofold failure of both reservoirs.
This research is concerned with new developments and practical applications of a physicallybased numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d'ÉLÉments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the * Solution and application to integrated watershed management. # Corresponding author. F. Padilla et al. 816 flooding of the Meirama open pit and the local water balances for different hydrological components.
The present research is concerned with the latest developments and practical application of a physically-based numerical model MELEF (Modèle d'ÉLÉments Fluides, in French) that incorporates a finite elements solution to the steady/transient problems of the joint ground/surface fresh/salt water flows in inland and coastal regulated watersheds. The proposed model considers surface and groundwater interactions to be 2-D horizontally distributed and depthaveraged through a diffusive wave approach. Infiltration rates, overland flows and evapotranspiration processes are considered by diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. The application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The model was adapted and calibrated during a period of five years (2008/2012) with the help of hydrological parameters, registered flow rates, water levels, precipitation, water uses and water management operations in surface and groundwater bodies. The results presented predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers and the flooding of the Meirama open pit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.