The past 50 years of research on the mechanical properties of human dentin are reviewed. Since the body of work in this field is highly inconsistent, it was often necessary to re-analyze prior studies, when possible, and to re-assess them within the framework of composite mechanics and dentin structure. A critical re-evaluation of the literature indicates that the magnitudes of the elastic constants of dentin must be revised considerably upward. The Young's and shear moduli lie between 20-25 GPa and 7-10 GPa, respectively. Viscoelastic behavior (time-dependent stress relaxation) measurably reduces these values at strain rates of physiological relevance; the reduced modulus (infinite relaxation time) is about 12 GPa. Furthermore, it appears as if the elastic properties are anisotropic (not the same in all directions); sonic methods detect hexagonal anisotropy, although its magnitude appears to be small. Strength data are re-interpreted within the framework of the Weibull distribution function. The large coefficients of variation cited in all strength studies can then be understood in terms of a distribution of flaws within the dentin specimens. The apparent size-effect in the tensile and shear strength data has its origins in this flaw distribution, and can be quantified by the Weibull analysis. Finally, the relatively few fracture mechanics and fatigue studies are discussed. Dentin has a fatigue limit. For stresses smaller than the normal stresses of mastication, approximately 30 MPa, a flaw-free dentin specimen apparently will not fail. However, a more conservative approach based on fatigue crack growth rates indicates that if there is a pre-existing flaw of sufficient size (approximately 0.3-1.0 mm), it can grow to catastrophic proportion with cyclic loading at stresses below 30 MPa.
This study compares changes in bone microstructure in 6-month-old male GC-treated and female ovariectomized mice to their respective controls. In addition to a reduction in trabecular bone volume, GC treatment reduced bone mineral and elastic modulus of bone adjacent to osteocytes that was not observed in control mice nor estrogen-deficient mice. These microstructural changes in combination with the macrostructural changes could amplify the bone fragility in this metabolic bone disease.
Introduction:Patients with glucocorticoid (GC)-induced secondary osteoporosis tend to fracture at higher bone mineral densities than patients with postmenopausal osteoporosis. This suggests that GCs may alter bone material properties in addition to BMD and bone macrostructure. Materials and Methods: Changes in trabecular bone structure, elastic modulus, and mineral to matrix ratio of the fifth lumbar vertebrae was assessed in prednisolone-treated mice and placebo-treated controls for comparison with estrogen-deficient mice and sham-operated controls. Compression testing of the third lumbar vertebrae was performed to assess whole bone strength. Results: Significant reductions in trabecular bone volume and whole bone strength occurred in both prednisolone-treated and estrogen-deficient mice compared with controls after 21 days (p < 0.05). The average elastic modulus over the entire surface of each trabecula was similar in all the experimental groups. However, localized changes within the trabeculae in areas surrounding the osteocyte lacunae were observed only in the prednisolone-treated mice. The size of the osteocyte lacunae was increased, reduced elastic modulus around the lacunae was observed, and a "halo" of hypomineralized bone surrounding the lacunae was observed. This was associated with reduced (nearly 40%) mineral to matrix ratio determined by Raman microspectroscopy. These localized changes in elastic modulus and bone mineral to matrix ratio were not observed in the other three experimental groups. Conclusions: Based on these results, it seems that GCs may have direct effects on osteocytes, resulting in a modification of their microenvironment. These changes, including an enlargement of their lacunar space and the generation of a surrounding sphere of hypomineralized bone, seem to produce highly localized changes in bone material properties that may influence fracture risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.