Abstract. MHD instabilities in the core and edge of the KSTAR plasmas have been visualized in 2D using an electron cyclotron emission imaging (ECEI) system with sufficient time and space resolutions for the study of the underlying dynamics. In the core region where the ECE optical depth is large, the ECEI has provided localized measurements of fast MHD phenomena such as the crash of internal kinks and coalescence of dual flux tubes. In the edge pedestal region of H-mode plasmas where the optical depth is marginal, the ECEI measurements were found to be still localized and were able to provide detailed 2D images of edge localized modes (ELMs) such as the growth of multiple filamentary structures and the crash of the pedestal characterized by fast localized bursts of the filaments [3]. The effect of electron temperature and density fluctuations on the ECE signals has been analysed to understand the limitations of the edge ECEI measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.