Soliton self-frequency shift (SSFS), a consequence of Raman self-pumping that continuously redshifts a soliton pulse, has been widely studied recently for applications to fiber-based sources and signal processing. In this paper, the fundamentals of SSFS are reviewed. Various fiber platforms for SSFS (single-mode fiber, microstructured fiber, and higher order mode fiber) are presented and experimental SSFS demonstrations in these fibers are discussed. Observation of Cerenkov radiation in fibers exhibiting SSFS is also presented. A number of interesting applications of SSFS, such as wavelength-agile lasers, analog-to-digital conversion, and slow light, are briefly discussed.
We demonstrate a method of generating femtosecond pulses at 1350 nm by exciting Cherenkov radiation in a higher-order-mode fiber with a 1064 nm source. We measure a 134 fs, 0.66 nJ output pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.