BACKGROUNDANDPURPOSE Neurologic morbidity remains high in neonates with perinatal hypoxic-ischemic injury despite therapeutic hypothermia. DTI provides qualitative and quantitative information about the microstructure of the brain, and a near-infrared spectroscopy index can assess cerebrovascular autoregulation. We hypothesized that lower ADC values would correlate with worse autoregulatory function. MATERIALSANDMETHODS Thirty-one neonates with hypoxic-ischemic injury were enrolled. ADC scalars were measured in 27 neonates (age range, 4–15 days) in the anterior and posterior centrum semiovale, basal ganglia, thalamus, posterior limb of the internal capsule, pons, and middle cerebellar peduncle on MRI obtained after completion of therapeutic hypothermia. The blood pressure range of each neonate with the most robust autoregulation was identified by using a near-infrared spectroscopy index. Autoregulatory function was measured by blood pressure deviation below the range with optimal autoregulation. RESULTS In neonates who had MRI on day of life ≥10, lower ADC scalars in the posterior centrum semiovale (r = −0.87, P = .003, n = 9) and the posterior limb of the internal capsule (r = −0.68, P = .04, n = 9) correlated with blood pressure deviation below the range with optimal autoregulation during hypothermia. Lower ADC scalars in the basal ganglia correlated with worse autoregulation during rewarming (r = −0.71, P = .05, n = 8). CONCLUSIONS Blood pressure deviation from the optimal autoregulatory range may be an early biomarker of injury in the posterior centrum semiovale, posterior limb of the internal capsule, and basal ganglia. Optimizing blood pressure to support autoregulation may decrease the risk of brain injury in cooled neonates with hypoxic-ischemic injury.
SummaryBackground Low-osmolar non-ionic radiocontrast media (RCMs) are commonly used throughout hospitals. However, the incidence of immediate adverse drug reactions (ADRs) to various low-osmolar non-ionic RCMs is not well studied. We compared the incidence of immediate ADRs among different low-osmolar non-ionic RCMs used in computed tomography (CT). Methods Severance Hospital has collected data for adverse reactions occurring in-hospital using an internally developed system. Using this data, we reviewed 1969 immediate ADRs from 286 087 RCM-contrasted CT examinations of 142 099 patients and compared the immediate ADRs of iobitridol, iohexol, iopamidol, and iopromide. We analysed the incidence of immediate ADRs to different RCMs, as well as the effect of single or multiple CT examinations per day. Results Iopromide showed the highest incidence of immediate ADRs (1.03%) and was followed by iopamidol (0.67%), iohexol (0.64%), and iobitridol (0.34%). In cases of anaphylaxis, iopromide also showed the highest incidence (0.041%), followed by iopamidol (0.023%), iohexol (0.018%), and iobitridol (0.012%). Risk of immediate ADR due to multiple CT examinations (1.19%) was significantly higher than the risk due to a single CT examination (0.63%). Risk of anaphylaxis was also higher for multiple CT examinations (0.052%) than for a single CT examination (0.020%). Conclusions and Clinical Relevance The incidence of immediate ADRs varied according to the low-osmolar non-ionic RCM used. Iopromide-induced immediate ADRs were more frequent, while iobitridol was associated with fewer immediate ADRs than other RCMs. Multiple CT examinations per day resulted in a higher incidence of immediate ADRs and anaphylaxis than a single CT examination. Clinicians should consider these risk differences of immediate ADRs when prescribing contrasted CT examinations.
Using a transorbital approach we induced the temporal occlusion and reperfusion model in 18 cats. A vascular clamp was placed on the main trunk of the left middle cerebral artery (MCA) for 1 h. Diffusion- and perfusion-weighted MR images were obtained at 1, 3, 6 and 24 h after the clip was released. The cats were killed 24 h after reperfusion, and triphenyl tetrazolium chloride (TTC) staining was performed. After the relative cerebral blood volume (rCBV), time to peak enhancement (TTP) and apparent diffusion coefficient (ADC) maps had been acquired, ROIs were drawn on (1) the area of the infarct produced, (2) the area of high signal intensity on initial diffusion-weighted magnetic resonance imaging (DWI) but normal on TTC staining, e.g., salvaged parenchyma. The ratios of these areas to the normal contralateral cortex were calculated and compared with those of the areas of the final infarct and the salvaged parenchyma. Areas of final infarct showed a temporal increase of rCBV on 3 and 6-h imaging and a final depletion on 24-h imaging. A persistent decrease of ADC value and delayed TTP were observed. Salvaged parenchyma also showed increased rCBV after reperfusion until the last imaging comparing it to the final area of infarct (P< 0.05, 24-h rCBV). The initial decrease in the ADC and delayed TTP normalized on 24-h imaging. In conclusion, rCBV of 24-h imaging was the reliable parameter to predict final infarct. A combination of serial changes on DWI and perfusion-weighted imaging (PWI) can predict ischemic penumbra and outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.