Adaptive tracking techniques are applied to pneumatic muscle actuators arranged in bicep and tricep configurations. The control objective is to force the joint angle to track a specified reference path. Mathematical models are derived for the bicep and tricep configurations. The models are nonlinear and in general time-varying, making adaptive control desirable. Stability results are derived, and the results of simulation studies are presented, contrasting the nonlinear adaptive control to a nonadaptive PID control approach.
Genetic algorithms show powerful capabilities for automatically designing fuzzy systems from data, but many proposed methods must be subjected to some minimal structure assumptions, such as rule base size. In this paper, we also address the design of fuzzy systems from data. A new evolutionary approach is proposed for deriving a compact fuzzy classification system directly from data without any a priori knowledge or assumptions on the distribution of the data. At the beginning of the algorithm, the fuzzy classifier is empty with no rules in the rule base and no membership functions assigned to fuzzy variables. Then, rules and membership functions are automatically created and optimized in an evolutionary process. To accomplish this, parameters of the variable input spread inference training (VISIT) algorithm are used to code fuzzy systems on the training data set. Therefore, we can derive each individual fuzzy system via the VISIT algorithm, and then search the best one via genetic operations. To evaluate the fuzzy classifier, a fuzzy expert system acts as the fitness function. This fuzzy expert system can effectively evaluate the accuracy and compactness at the same time. In the application section, we consider four benchmark classification problems: the iris data, wine data, Wisconsin breast cancer data, and Pima Indian diabetes data. Comparisons of our method with others in the literature show the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.