To better understand the structures of active-region filaments and the eruption process, we study an active-region filament eruption in active region NOAA 11082 in detail on June 22, 2010. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament is consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using time slice method. According to the morphology change during the filament eruption, it is found that the activeregion filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.
Kink instability is a possible mechanism for solar filament eruption. However, the twist of a solar filament is very difficult to directly measure from observation. In this paper, we carried out the measurement of the twist of a solar filament by analyzing its leg rotation. An inverse S-shaped filament in active region NOAA 11485 was observed by the Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) on 2012 May 22. During its eruption, the leg of the filament exhibited a significant rotation motion. The 304Å images were used to uncurl along the circles, whose centers are the axis of the filament's leg. The result shows that the leg of the filament rotated up to about 510 degrees (about 2.83π) around the axis of the filament within twenty-three minutes. The maximal rotation speed reached 100 degrees per minute (about 379.9 km/s at radius 18 ′′ ), which is the fastest rotation speed that has been reported. We also calculated the decay index along the polarity inversion line in this active region and found that the decline of the overlying field with height is not so fast enough to trigger the torus instability. According to the condition of kink instability, it is indicating that the kink instability is the trigger mechanism for the solar filament eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.