Lysine-specific demethylase 1 (LSD1), which has been considered as a potential therapeutic target in human cancer, has been known to regulate many biological functions through its non-histone substrates. Although LSD1-induced hypoxia-inducible factor alpha (HIF1α) demethylation has recently been proposed, the effect of LSD1 on the relationship between HIF1α post-translational modifications (PTMs) and HIF1α-induced tumor angiogenesis remains to be elucidated. Here, we identify a new methylation site of the HIF1α protein antagonized by LSD1 and the interplay between HIF1α protein methylation and other PTMs in regulating tumor angiogenesis. LSD1 demethylates HIF1α at lysine (K) 391, which protects HIF1α against ubiquitin-mediated protein degradation. LSD1 also directly suppresses PHD2-induced HIF1α hydroxylation, which has a mutually dependent interplay with Set9-mediated HIF1α methylation. Moreover, the HIF1α acetylation that occurs in a HIF1α methylation-dependent manner is inhibited by the LSD1/NuRD complex. HIF1α stabilized by LSD1 cooperates with CBP and MTA1 to enhance vascular endothelial growth factor (VEGF)-induced tumor angiogenesis. Thus, LSD1 is a key regulator of HIF1α/VEGF-mediated tumor angiogenesis by antagonizing the crosstalk between PTMs involving HIF1α protein degradation.
The epithelial-mesenchymal transition (EMT) is the pivotal mechanism underlying the initiation of cancer invasion and metastasis. Although Mel-18 has been implicated in several biological processes in cancer, its function in the EMT of human cancers has not yet been studied. Here, we demonstrate that Mel-18 negatively regulates the EMT by epigenetically modulating miR-205. We identified miR-205 as a novel target of Mel-18 using a microRNA microarray analysis and found that Mel-18 increased miR-205 transcription by the inhibition of DNA methyltransferase-mediated DNA methylation of the miR-205 promoter, thereby downregulating its target genes, ZEB1 and ZEB2. Furthermore, the loss of Mel-18 promoted ZEB1- and ZEB2-mediated downregulation of E-cadherin transcription and also enhanced the expression of mesenchymal markers, leading to increased migration and invasion in MCF-7 cells. In MDA-MB-231 cells, Mel-18 overexpression restored E-cadherin expression, resulting in reduced migration and invasion. These effects were reversed by miR-205 overexpression or inhibition. A tumor xenograft with Mel-18 knockdown MCF-7 cells consistently showed increased ZEB1 and ZEB2 expression and decreased E-cadherin expression. Taken together, these results suggest that Mel-18 functions as a tumor suppressor by its novel negative control of the EMT, achieved through regulating the expression of miR-205 and its target genes, ZEB1 and ZEB2.
A two-step rf plasma oxidation technique of an insulating layer has been performed to enhance electrical and structural properties of magnetic tunnel junction (MTJ) devices. Comparison was made by analyzing properties of the MTJ oxidized by conventional rf and two-step rf plasma oxidation methods. Experimentally observed results give improved surface imaging and sufficient oxygen contents of the insulating layer under the two-step oxidation method. In addition, electrical breakdown voltage and magnetoresistance of the MTJ were increased from 0.7 to 1.8 V and from 4.5% to 6.8%, respectively, correlated with improved structural information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.