Heat transfer rates were experimentally measured for laminar convection air flows in two-dimensional triangular enclosures with two side walls which were heated and cooled and an adiabatic bottom. Both local and overall heat transfer data were obtained by the use of a Wollaston prism schlieren interferometer. The angle between the two isothermal side walls was varied between 60 and 120 deg, which resulted in a variation in aspect ratio (enclosure height/base width) between 0.29 and 0.87, while the Grashof number was varied between 2.9 × 106 and 9.0 × 106. Results are compared to previously obtained isothermal inclined flat plate data and rectangular enclosure data. Present results agree with rectangular enclosure results. One deviation from local rectangular enclosure data was found in the apex regions of the triangular enclosures, where complex thermal and flow interactions occurred due to proximity of the two side walls.
The unbalance response of a Jeffcott rotor with shaft bow and/or runout was theoretically and experimentally studied. Bow refers to a rotor which is warped; bow is a function of running speed. Runout refers to electrical or mechanical asymmetrics of the shaft and is not dynamical. Included in the theoretical model is the capability of low-speed response compensation, such that the response at low speed can be vectorially subtracted from the total response at any rotational speed. Responses of rotors with equal amounts of bow or runout are shown to be significantly different in both Bode and Nyquist forms. Using low speed compensation is shown to “correct” the unbalance response of a rotor with runout to an ideal (unbowed - no runout) case. The amplitude response plot of a bowed rotor is not corrected to the ideal response plot by the use of such compensation; however, the shape of the phase response plot closely resembles the ideal case for most cases. A small scale lightly damped Jeffcott rotor rig was also tested. The magnitude and angular position of the shaft bow were parametrically varied. The vibration data from the rotor tests were plotted using a synchronous tracking filter by two methods: both not using and using low speed compensation. Experimental data agree excellently with predictions for a bowed rotor for all cases and differences less than 8 percent were usually found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.