A novel silicon on insulator (SOI) MEMS process has been designed and developed to realize a two axes thermally actuated single crystal silicon micromirror device, which consists of a mirror plate, four flexural springs and four thermal actuators. The mirror plate has the same thickness as a SOI device layer i.e. 4 µm. The SOI layer is selectively thinned down to 2 µm for fabricating flexural springs and thermal actuators. The thinning of the SOI layer is essential to lower (control) the flexural rigidity of the springs and the actuators and thus to achieve a higher tilt angle at low thermal power. The developed single wafer process is based on dry reactive ion etching CMOS compatible chemistries. The minimum chip size design of 1 mm × 1 mm has a 400 µm diameter mirror plate. Other chip designs include the mirror diameters in the range from 200 to 500 µm. This paper also presents a study on the mirror plate curvature, thermal actuation mechanism and the experimental results. The measured maximum angular deflection achieved was 17 • at an operating applied voltage of less than 2 V, and the radius of curvature of the mirror plate was in the range from 20 to 50 mm. The micromirror was developed for a miniature catheter optical probe for optical coherence tomography in vivo imaging. A low cross-sectional size of the probe and higher resolution are essential for investigating inaccessible pathologies in vivo. This required a compact micromirror chip and yet sufficiently large mirror plate (typically ∼500 µm or more), this trade-off was the key motivation for the research presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.