To study the receptors involved in the interaction between extracellular matrix proteins and hematopoietic progenitor cells, we analyzed the expression of beta 1 integrins on CD34+ bone marrow cells by means of immunoflowcytometry. Alpha 4 beta 1 and alpha 5 beta 1 were expressed, whereas alpha 1 beta 1, alpha 2 beta 1, alpha 3 beta 1, alpha 6 beta 1, and alpha v beta 1 were virtually absent. Furthermore, we assessed the alpha 4 and alpha 5 expression on committed myeloid progenitor cells. These colony-forming cells were detected in the alpha 4 dull fraction and the alpha 5 dull fraction. During myeloid differentiation, both in vivo and in vitro, a differential expression of alpha 4 beta 1 and alpha 5 beta 1 was observed. alpha 5 beta 1 was found to be lost at the myelocytic-metamyelocytic stage, before the loss of alpha 4 beta 1, at the band stage. Functional studies showed no binding of erythroid progenitor-depleted, CD34+ bone marrow cells to fibronectin. However, protein kinase C activation strongly induced fibronectin binding (68% of the cells). Inhibition experiments with specific antibodies and peptides showed the binding to be mediated by both alpha 4 beta 1 and alpha 5 beta 1. Also, colony-forming cells of granulocytes and macrophages were demonstrated to adhere to fibronectin in an activation-dependent way. During granulocyte colony-stimulating factor-induced in vitro maturation, the activation-dependent fibronectin binding capacity is gradually lost. We conclude that: (1) CD34+ bone marrow cells express alpha 4 beta 1 and alpha 5 beta 1; (2) the expression of alpha 4 beta 1 and alpha 5 beta 1 is differentially expressed during myeloid differentiation; and (3) binding of CD34+ bone marrow cells to fibronectin is activation dependent.
To study the receptors involved in the interaction between extracellular matrix proteins and hematopoietic progenitor cells, we analyzed the expression of beta 1 integrins on CD34+ bone marrow cells by means of immunoflowcytometry. Alpha 4 beta 1 and alpha 5 beta 1 were expressed, whereas alpha 1 beta 1, alpha 2 beta 1, alpha 3 beta 1, alpha 6 beta 1, and alpha v beta 1 were virtually absent. Furthermore, we assessed the alpha 4 and alpha 5 expression on committed myeloid progenitor cells. These colony-forming cells were detected in the alpha 4 dull fraction and the alpha 5 dull fraction. During myeloid differentiation, both in vivo and in vitro, a differential expression of alpha 4 beta 1 and alpha 5 beta 1 was observed. alpha 5 beta 1 was found to be lost at the myelocytic-metamyelocytic stage, before the loss of alpha 4 beta 1, at the band stage. Functional studies showed no binding of erythroid progenitor-depleted, CD34+ bone marrow cells to fibronectin. However, protein kinase C activation strongly induced fibronectin binding (68% of the cells). Inhibition experiments with specific antibodies and peptides showed the binding to be mediated by both alpha 4 beta 1 and alpha 5 beta 1. Also, colony-forming cells of granulocytes and macrophages were demonstrated to adhere to fibronectin in an activation-dependent way. During granulocyte colony-stimulating factor-induced in vitro maturation, the activation-dependent fibronectin binding capacity is gradually lost. We conclude that: (1) CD34+ bone marrow cells express alpha 4 beta 1 and alpha 5 beta 1; (2) the expression of alpha 4 beta 1 and alpha 5 beta 1 is differentially expressed during myeloid differentiation; and (3) binding of CD34+ bone marrow cells to fibronectin is activation dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.