Abstract. Data from a recent field campaign in Mexico City are used to evaluate the performance of the EPA Federal Reference Method for monitoring the ambient concentrations of NO 2 . Measurements of NO 2 from standard chemiluminescence monitors equipped with molybdenum oxide converters are compared with those from Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) and Differential Optical Absorption Spectroscopy (DOAS) instruments. A significant interference in the chemiluminescence measurement is shown to account for up to 50% of ambient NO 2 concentration during afternoon hours. As expected, this interference correlates well with non-NO x reactive nitrogen species (NO z ) as well as with ambient O 3 concentrations, indicating a photochemical source for the interfering species. A combination of ambient gas phase nitric acid and alkyl and multifunctional alkyl nitrates is deduced to be the primary cause of the interference. Observations at four locations at varying proximities to emission sources indicate that the percentage contribution of HNO 3 to the interference decreases with time as the air parcel ages. Alkyl and multifunctional alkyl nitrate concentrations are calculated to reach concenCorrespondence to: E. J. Dunlea (edward.dunlea@colorado.edu) trations as high as several ppb inside the city, on par with the highest values previously observed in other urban locations. Averaged over the MCMA-2003 field campaign, the chemiluminescence monitor interference resulted in an average measured NO 2 concentration up to 22% greater than that from co-located spectroscopic measurements. Thus, this interference has the potential to initiate regulatory action in areas that are close to non-attainment and may mislead atmospheric photochemical models used to assess control strategies for photochemical oxidants.
Recent technological advances have allowed the development of robust, relatively compact, low power, rapid response (approximately 1 s) instruments with sufficient sensitivity and specificity to quantify many trace gases and aerosol particle components in the ambient atmosphere. Suites of such instruments can be deployed on mobile platforms to study atmospheric processes, map concentration distributions of atmospheric pollutants, and determine the composition and intensities of emission sources. A mobile laboratory containing innovative tunable infrared laser differential absorption spectroscopy (TILDAS) instruments to measure selected trace gas concentrations at sub parts-per-billion levels and an aerosol mass spectrometer (AMS) to measure size resolved distributions of the nonrefractory chemical components of fine airborne particles as well as selected commercial fast response instruments and position/velocity sensors is described. Examples of the range of measurement strategies that can be undertaken using this mobile laboratory are discussed, and samples of measurement data are presented.
A new, integrated methodologyto locate and measure methane emissions from natural gas systems has been developed. Atmospheric methane sources are identified by elevated ambient CH4 concentrations measured with a mobile laser-based methane analyzer. The total methane emission rate from a source is obtained by simulating the source with a sulfur hexafluoride (SFS) tracer gas release and by measuring methane and tracer concentrations along downwind sampling paths using mobile, real-time analyzers. Combustion sources of methane are distinguished from noncombustion sources by concurrent ambient carbon dioxide measurements. Three variations on the tracer ratio method are described for application to (1) small underground vaults, (2) aboveground natural gas facilities, and (3) diffuse methane emissions from an entire town. Results from controlled releases and from replicate tests demonstrate thatthe tracer ratio approach can yield total emission rates to within approximately &15%. The estimated accuracy of emission estimates for urban areas with a variety of diffuse emissions is &50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.