The aerodynamic interaction between the rotor and stator airfoils of a large scale axial turbine stage have been studied experimentally. The data included measurements of the time averaged and instantaneous surface pressures and surface thin film gage output on both the rotor and stator at midspan. The data also included measurement of the stator suction and pressure surface time averaged heat transfer at midspan. The data was acquired with rotor-stator axial gaps of 15 and 65 percent of axial chord. The upstream potential flow influence of the rotor on the stator was seen as well as the downstream potential flow and wake influences of the stator on the rotor. It was also seen that at the 15 percent axial gap, the stator heat-transfer coefficient was typically 25 percent higher than that at the 65 percent gap.
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi–pass, smooth–wall heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages (coolant–to–wall temperature ratio, Rossby number, Reynolds number and radius–to–passage hydraulic diameter ratio). These four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. It was found that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs and that the effect of rotation on the heat transfer coefficients was markedly different depending on the flow direction. Local heat transfer coefficients were found to decrease by as much as 60 percent and increase by 250 percent from no rotation levels. Comparisons with a pioneering stationary vertical tube buoyancy experiment showed reasonably good agreement. Correlation of the data is achieved employing dimensionless parameters derived from the governing flow equations.
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips. skewed at 45 degrees to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. A n analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages:coolant-to-wall temperature ratio, rotation number. Reynolds number and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and huoyancy. decreased to as low as 40 percenl of the value wthout rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall model. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips. (2) the effects of rotation are markedly different depending upon the flow direction and (3) the heat transfer with skewed trip strips i s less sensitivity to buoyancy than the heat transfer in motleis with either smooth walls or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and peometry-specific tests will be required for accurate design information.
Experiments were conducted to determine the effects of rotation on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a smooth wall, large scale heat transfer model. The objective was to obtain the heat transfer data base required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. An analysis of the governing equations showed that four parameters influence the heat transfer in rotating passages (coolant density ratio, Rossby number, Reynolds number and radius ratio). These four parameters were varied over ranges which exceed the ranges of current open literature results, but which are typical of current and advanced gas turbine engine operating conditions. Rotation affected the heat transfer coefficients differently for different locations in the coolant passage. For example, heat transfer at some locations increased with rotation, but decreased and then increased again at other locations. Heat transfer coefficients varied by as much as a factor of 5 between the leading and trailing surfaces for the same test condition and streamwise location. Comparisons with previous results are presented.
Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/−50 to 60 degrees to the axis of rotation. Most of the previously–presented, multiple–passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. The present work compares results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the midchord and trailing edge regions of the rotating airfoil. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.