A two-dimensional, boundary-layer program, STAN5, was modified to incorporate a low-Reynolds number version of the K-ε, two-equation turbulence model for the predictions of flow and heat transfer around turbine airfoils. The K-ε, two-equation model with optimized empirical correlations was used to account for the effects of free-stream turbulence and transitional flow. The model was compared with experimental flat plate data and then applied to turbine airfoil heat transfer prediction. A two-zone model was proposed for handling the turbulent kinetic energy and dissipation rate empirically at the airfoil leading edge region. The result showed that the predicted heat transfer coefficient on the airfoil agreed favorably with experimental data, especially for the pressure side. The discrepancy between predictions and experimental data of the suction surface normally occurred at transitional and fully turbulent flow regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.