Pyridine-based osmium complexes bearing either a carboxylate or aldehyde group were covalently attached to glucose oxidase and were shown to work as mediators for the reoxidation of the enzyme. For the complex containing the carboxylate group, the binding was made through carbodiimide coupling to the amine residues in the protein. For the complex containing the aldehyde group, the reductive coupling was carried out by condensation with the amino groups on the protein in the presence of sodium cyanoborohydride. Electrochemical studies show evidence for both intramolecular and intermolecular redox mediation for the electrochemical reoxidation of the modified glucose oxidases in the presence of glucose. The modified enzymes adsorbed on glassy carbon and platinum show different electrochemical responses for the two electrode materials, suggesting that orientation of the adsorbed enzyme is induced due to the interaction of the osmium complex with the different surfaces. Construction of enzyme switches based on these modified enzymes was carried out, and their responses were compared with those obtained using native glucose oxidase and a soluble redox mediator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.