A longitudinal incision resembling a bucket-handle tear was made in the menisci of 8 rabbits, 6 dogs, 11 pigs and 12 sheep. In some of the animals of each species the cut was repaired by suturing, and in others it was not. Gross inspection, as well as examination by light and electron microscopy, showed that no healing had occurred after six months in the sutured or the unsutured wounds and that the meniscus was incapable of significant intrinsic repair. In a second experiment longitudinal, transverse and T-shaped cuts were made in the menisci of 12 sheep, and a flap of synovium was sutured into the wound. Three months later there was clear evidence of healing by the formation of cartilaginous tissue. Examination by light and electron microscopy showed that the newly formed repair tissue, possibly derived by metaplasia from the synovium, had a morphology intermediate between hyaline cartilage and fibrocartilage. Synovial implantation may therefore be considered as an alternative to meniscectomy in the management of the torn meniscus.
1. Venous blood concentrations of the branched-chain amino acids, valine, leucine and isoleucine, and urinary nitrogen excretion have been measured in sixteen adult males, from 2 h to 7 days after injury, and in four adults after elective skin grafts. 2. In the injured group the concentrations of these amino acids rose significantly 24 h after injury and had doubled at 4 days and remained high; in contrast the skin-graft patients showed no significant change. 3. In those injured patients with initial hyperketonaemia, defined as more than 0-2 mmo1/1, the increase in concentrations of branched-chain amino acids at the fourth and seventh days after injury was significantly less than in those with normoketonaemia, and was accompanied by lower urinary nitrogen excretion throughout the whole period. 4. It is suggested that the changes in the concentration of branched-chain amino acids after injury indicate decreased uptake by muscle or excessive release due to an imbalance between protein synthesis and protein catabolism in this tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.