This paper describes the progress of the DEMO design and R&D activities in Europe. The focus is on a systems engineering and design integration approach, which is recognized to be essential from an early stage to identify and address the engineering and operational challenges, and the requirements for technology and physics R&D. We present some of the preliminary design choices/sensitivity studies to explore and narrow down the design space and identify/select attractive design points. We also discuss some of the initial results of work being executed in the EUROfusion Consortium by a geographically distributed project team involving many EU laboratories, universities, and industries in Europe. (C) 2016 The Authors. Published by Elsevier B.V
Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural materials like steels, knowledge and strategies to improve the properties are still under development. These strategies discussed here, include new alloying approaches and microstructural stabilization by oxide dispersion strengthened as well as TiC stabilized tungsten based materials. The fracture behavior is improved by using tungsten laminated and tungsten wire reinforced materials. Material development is accompanied by neutron irradiation campaigns. Self-passivation, which is essential in case of loss-of-coolant accidents for plasma facing materials, can be achieved by certain amounts of chromium and titanium. Furthermore, modeling and computer simulation on the influence of alloying elements and heat loading and helium bombardment will be presented.
Abstract. Tungsten is a promising candidate for the plasma-facing components of a future fusion reactor, but its use is strongly restricted by its inherent brittleness. An innovative concept to overcome this problem is tungsten fibre-reinforced tungsten composite. In this article we present the first mechanical test of such a composite material using a sample containing multiple fibres. The in-situ fracture experiment was performed in a scanning electron microscope for close observation of the propagating crack. Stable crack propagation accompanied with rising load bearing capacity is observed. The fracture toughness is estimated using the test results and the surface observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.